Realtime Data Mining (eBook)
XXIII, 313 Seiten
Springer International Publishing (Verlag)
978-3-319-01321-3 (ISBN)
Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's 'classic' data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed.
This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.
1 Brave New Realtime World – Introduction.- 2 Strange Recommendations? – On The Weaknesses Of Current Recommendation Engines.- 3 Changing Not Just Analyzing – Control Theory And Reinforcement Learning.- 4 Recommendations As A Game – Reinforcement Learning For Recommendation Engines.- 5 How Engines Learn To Generate Recommendations – Adaptive Learning Algorithms.- 6 Up The Down Staircase – Hierarchical Reinforcement Learning.- 7 Breaking Dimensions – Adaptive Scoring With Sparse Grids.- 8 Decomposition In Transition - Adaptive Matrix Factorization.- 9 Decomposition In Transition Ii - Adaptive Tensor Factorization.- 10 The Big Picture – Towards A Synthesis Of Rl And Adaptive Tensor Factorization.- 11 What Cannot Be Measured Cannot Be Controlled - Gauging Success With A/B Tests.- 12 Building A Recommendation Engine – The Xelopes Library.- 13 Last Words – Conclusion.- References.- Summary Of Notation.
Erscheint lt. Verlag | 3.12.2013 |
---|---|
Reihe/Serie | Applied and Numerical Harmonic Analysis | Applied and Numerical Harmonic Analysis |
Zusatzinfo | XXIII, 313 p. 100 illus., 88 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik | |
Technik | |
Schlagworte | Collaborative Filtering • hierarchical methods • Markov decision process • real-time analysis • Recommendation Systems • Reinforcement Learning |
ISBN-10 | 3-319-01321-1 / 3319013211 |
ISBN-13 | 978-3-319-01321-3 / 9783319013213 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich