Analysis and Geometry of Markov Diffusion Operators (eBook)

eBook Download: PDF
2013 | 2014
XX, 552 Seiten
Springer International Publishing (Verlag)
978-3-319-00227-9 (ISBN)

Lese- und Medienproben

Analysis and Geometry of Markov Diffusion Operators - Dominique Bakry, Ivan Gentil, Michel Ledoux
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations.
The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.



Dominique Bakry held his first research position at the CNRS  at the University of Strasbourg, and since 1988  has been a professor at the University of Toulouse. Moreover, since 2004 he has been a senior member of the Institut Universitaire de France. He was editor of the journal Potential Analysis. His research interests center on probability, analysis of Markov operators, differential geometry and orthonormal polynomials.

Ivan Gentil held his first position at the University of Paris-Dauphine in 2003 and since 2010 has been a professor at the University of Lyon. His research interests center on analysis, probability, partial differential equations and functional inequalities such as logarithmic Sobolev inequalities.  

Michel Ledoux held his first research position at the CNRS, and since 1991 has been a professor at the University of Toulouse. Since 2010 he has been a senior member of the Institut Universitaire de France, having been a junior member from 1997 to 2002. He has been associate editor for various journals including the Annals of Probability and Probability Theory and Related Fields, and is currently chief editor of the Electronic Journal of Probability. His research interests center on probability theory and functional analysis, measure concentration, diffusion operators and functional inequalities, random matrices, probability in Banach spaces.

Dominique Bakry held his first research position at the CNRS  at the University of Strasbourg, and since 1988  has been a professor at the University of Toulouse. Moreover, since 2004 he has been a senior member of the Institut Universitaire de France. He was editor of the journal Potential Analysis. His research interests center on probability, analysis of Markov operators, differential geometry and orthonormal polynomials.Ivan Gentil held his first position at the University of Paris-Dauphine in 2003 and since 2010 has been a professor at the University of Lyon. His research interests center on analysis, probability, partial differential equations and functional inequalities such as logarithmic Sobolev inequalities.   Michel Ledoux held his first research position at the CNRS, and since 1991 has been a professor at the University of Toulouse. Since 2010 he has been a senior member of the Institut Universitaire de France, having been a junior member from 1997 to 2002. He has been associate editor for various journals including the Annals of Probability and Probability Theory and Related Fields, and is currently chief editor of the Electronic Journal of Probability. His research interests center on probability theory and functional analysis, measure concentration, diffusion operators and functional inequalities, random matrices, probability in Banach spaces.

Introduction.- Part I Markov semigroups, basics and examples: 1.Markov semigroups.- 2.Model examples.- 3.General setting.- Part II Three model functional inequalities: 4.Poincaré inequalities.- 5.Logarithmic Sobolev inequalities.- 6.Sobolev inequalities.- Part III Related functional, isoperimetric and transportation inequalities: 7.Generalized functional inequalities.- 8.Capacity and isoperimetry-type inequalities.- 9.Optimal transportation and functional inequalities.- Part IV Appendices: A.Semigroups of bounded operators on a Banach space.- B.Elements of stochastic calculus.- C.Some basic notions in differential and Riemannian geometry.- Notations and list of symbols.- Bibliography.- Index.

Erscheint lt. Verlag 18.11.2013
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Grundlehren der mathematischen Wissenschaften
Zusatzinfo XX, 552 p.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte 39B62, 39B72, 47D07, 53C21 • curvature dimension condition • diffusion operators • functional inequalities • Markov operators • Partial differential equations
ISBN-10 3-319-00227-9 / 3319002279
ISBN-13 978-3-319-00227-9 / 9783319002279
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich