Atoms and Molecules describes the basic properties of atoms and molecules in terms of group theoretical methods in atomic and molecular physics. The book reviews mathematical concepts related to angular momentum properties, finite and continuous rotation groups, tensor operators, the Wigner-Eckart theorem, vector fields, and vector spherical harmonics. The text also explains quantum mechanics, including symmetry considerations, second quantization, density matrices, time-dependent, and time-independent approximation methods. The book explains atomic structure, particularly the Dirac equation in which its nonrelativistic approximation provides the basis for the derivation of the Hamiltonians for all important interactions, such as spin-orbit, external fields, hyperfine. Along with multielectron atoms, the text discusses multiplet theory, the Hartree-Fock formulation, as well as the electromagnetic radiation fields, their interactions with atoms in first and higher orders. The book explores molecules and complexes, including the Born-Oppenheimer approximation, molecular orbitals, the self-consistent field method, electronic states, vibrational and rotational states, molecular spectra, and the ligand field theory. The book can prove useful for graduate or advanced students and academicians in the field of general and applied physics.
ANGULAR MOMENTUM
Publisher Summary
This chapter discusses the orbital momentum operator and spherical harmonics and related functions. Orbital angular momentum operators and spherical harmonics are related. It may be seen from the standpoint of a central force problem. The chapter presents equations that exhibit the basic connections between orbital angular momentum operators and spherical harmonics. It also lists several formulas involving spherical harmonics. The quantum numbers in the coupled representation must be related in some fashion to those in the uncoupled representation. Quantum–mechanical wave functions and their first derivatives must be everywhere continuous, single-valued, and finite. The methods developed for the coupling of two angular momentum operators may be extended to any number of operators but not without additional complications.
1.1 Orbital Angular Momentum
The orbital angular momentum operator L is defined by
=1ℏ(r×p) (1.1-1)
where r is a vector whose components ri are x, y, z (or x1, x2, x3) and
=−iℏ∇ (1.1-2)
is the linear momentum operator; the rectangular components of the gradient operator . Expanding (1.1-1),
x=1ℏ(ypz−zpy)=−i(y∂∂z−z∂∂y) =i(sinφ∂∂θ+cotθcosφ∂∂φ), (1.1-3a)
y=1ℏ(zpx−xpz)=−i(z∂∂x−x∂∂z) =i(−cosφ∂∂θ+cotθsinφ∂∂φ), (1.1-3b)
z=1ℏ(xpy−ypx)=−i(x∂∂y−y∂∂x) =−i∂∂φ. (1.1-3c)
In (1.1-3) the angles θ and φ are the polar and azimuth angles, respectively.
The operators Lx, Ly, and Lz are Hermitian, i.e.,
i †=Li(i=x,y,z), (1.1-4)
and, as functions of the coordinates, Lx, Ly, and Lz are pure imaginary operators.
It will often be convenient to use spherical components of L; these are defined as
+1=−12(Lx+iLy)=−12eiφ(∂∂θ+icotθ∂∂φ),L−1=12(Lx−iLy)=−12e−iφ(∂∂θ−icotθ∂∂p),L0=Lz. (1.1-5)
The inverse relations are
x=−12(L+1−L−1), Ly=−i2(L+1−L−1), Lz=Lo. (1.1-6)
In contrast to the rectangular components of L, L+1 and L−1 are not Hermitian since
† +1=−L−1,L† −1=−L+1. (1.1-7)
The components of r and p satisfy certain commutation relations:
ri,pj]=iℏδij, (1.1-8a)
ri,rj]=[pi,pj]=0, (1.1-8b)
ri,p2]=2iℏpi, (1.1-8c)
pi,p2]=0 (1.1-8d)
in which ri, rj = x, y, z; pi pj = px, py, pz, and p2 = px2 + py2 + pz2. The definition of L (1.1-1) together with (1.1-8) imply that
Lx,Ly]=iLz,[Ly,Lz]=iLx,[Lz,Lx]=iLy. (1.1-9)
These may be written in any of the compact forms:
Li,Lj]=iLk(i,j.k cyclic), (1.1-10a)
×L=iL, (1.1-10b)
Li,Lj]=iεijkLk, (1.1-10c)
in which εijk is the antisymmetric unit tensor of rank 3 defined by
ijk={+1,−1,0,i,j,k in cyclic order,i, j, k not in cyclic order,two indices alike. (1.1-11)
The three statements (1.1-10a)–(1.1-10c) are equivalent in all respects. Additional commutator relations among the components of L, r, and p are
Li,rj]=iεijkrk, (1.1-12a)
Li,pj]=iεijkpk, (1.1-12b)
L0,L±1]=±L±1,[L+1,L−1]=−L0. (1.1-13)
Another important operator is L2, also known as the total orbital angular momentum operator. It may be expressed in various equivalent forms:
2=Lx 2+Ly 2+Lz 2 =−[∂2∂θ2+cotθ∂∂θ+(1+cot2θ)∂2∂φ2] =−[1sinθ∂∂θ(sinθ∂∂θ)+1sin2θ∂2∂φ2] =−L+1L−1+L0 2−L−1L+1 =∑q(−1)qLqL−q(q=1,0,−1). (1.1-14)
Employing relations (1.1-13) we also have
2=−2L+1L−1+L0(L0−1)=−2L−1L+1+L0(L0+1). (1.1-15)
L2 commutes with all components of L, i.e.,
L2,Lμ]=0 (1.1-16)
where Lμ refers to either rectangular components (Lx, Ly, Lz) or spherical components (L+1, L0, L−1 of L.
1.2 Spherical Harmonics and Related Functions
The spherical harmonics are defined by
lm(θ,φ)=(−1)m+|m|2l+14π(l−|m|)!(l+|m|)!Pl |m|(cosθ)eimφ (1.2-1)
with
=0,1,2,…, (1.2-2a)
=l,l−1,…,−l, (1.2-2b)
and Pl|m|(cos θ) an associated Legendre polynomial. The phase convection in (1.2-1) is not universal; the one adopted here is known as the Condon-Shortley convention. Some of the commonly used spherical harmonics are listed in Table 1.1; among their properties are:
TABLE 1.1
Spherical Harmonicsa
0 | 0 |
1 | 0 |
1 | ±1 |
2 | 0 |
2 | 1± |
2 | ±2 |
3 | 0 |
3 | ±1 |
3 | ±2 |
3 | ±3 |
4 | 0 |
4 | ±1 |
4 | ±3 |
4 | ±4 |
aIn spectroscopic notation, functions that are proportional to Ylm with l = 0, 1, 2, 3,… are called s, p, d, f,… functions.
l−m(θ,φ)=(−1)mY lm∗(θ,φ), (1.2-3a)
lm(π−θ,π+φ)=(−1)lYlm(θ,φ). (1.2-3b)
Erscheint lt. Verlag | 2.12.2012 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Quantenphysik |
Technik | |
ISBN-10 | 0-323-14294-X / 032314294X |
ISBN-13 | 978-0-323-14294-6 / 9780323142946 |
Haben Sie eine Frage zum Produkt? |
Größe: 54,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 20,2 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich