A Classical Introduction to Galois Theory (eBook)

eBook Download: PDF
2012 | 1. Auflage
296 Seiten
John Wiley & Sons (Verlag)
978-1-118-33667-0 (ISBN)

Lese- und Medienproben

A Classical Introduction to Galois Theory - Stephen C. Newman
Systemvoraussetzungen
75,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Explore the foundations and modern applications of Galois theory

Galois theory is widely regarded as one of the most elegant areas of mathematics. A Classical Introduction to Galois Theory develops the topic from a historical perspective, with an emphasis on the solvability of polynomials by radicals. The book provides a gradual transition from the computational methods typical of early literature on the subject to the more abstract approach that characterizes most contemporary expositions.

The author provides an easily-accessible presentation of fundamental notions such as roots of unity, minimal polynomials, primitive elements, radical extensions, fixed fields, groups of automorphisms, and solvable series. As a result, their role in modern treatments of Galois theory is clearly illuminated for readers. Classical theorems by Abel, Galois, Gauss, Kronecker, Lagrange, and Ruffini are presented, and the power of Galois theory as both a theoretical and computational tool is illustrated through:

* A study of the solvability of polynomials of prime degree

* Development of the theory of periods of roots of unity

* Derivation of the classical formulas for solving general quadratic, cubic, and quartic polynomials by radicals

Throughout the book, key theorems are proved in two ways, once using a classical approach and then again utilizing modern methods. Numerous worked examples showcase the discussed techniques, and background material on groups and fields is provided, supplying readers with a self-contained discussion of the topic.

A Classical Introduction to Galois Theory is an excellent resource for courses on abstract algebra at the upper-undergraduate level. The book is also appealing to anyone interested in understanding the origins of Galois theory, why it was created, and how it has evolved into the discipline it is today.

STEPHEN C. NEWMAN, MD, MSc, is Professor Emeritus of Psychiatry at the University of Alberta, Canada. He has published widely in psychiatric epidemiology and epidemiologic methods. Dr. Newman is the author of Biostatistical Methods in Epidemiology (Wiley).

Preface xi

1 Classical Formulas 1

1.1 Quadratic Polynomials 3

1.2 Cubic Polynomials 5

1.3 Quartic Polynomials 11

2 Polynomials and Field Theory 15

2.1 Divisibility 16

2.2 Algebraic Extensions 24

2.3 Degree of Extensions 25

2.4 Derivatives 29

2.5 Primitive Element Theorem 30

2.6 Isomorphism Extension Theorem and Splitting Fields 35

3 Fundamental Theorem on Symmetric Polynomials and Discriminants 41

3.1 Fundamental Theorem on Symmetric Polynomials 41

3.2 Fundamental Theorem on Symmetric Rational Functions 48

3.3 Some Identities Based on Elementary Symmetric Polynomials 50

3.4 Discriminants 53

3.5 Discriminants and Subfields of the Real Numbers 60

4 Irreducibility and Factorization 65

4.1 Irreducibility Over the Rational Numbers 65

4.2 Irreducibility and Splitting Fields 69

4.3 Factorization and Adjunction 72

5 Roots of Unity and Cyclotomic Polynomials 80

5.1 Roots of Unity 80

5.2 Cyclotomic Polynomials 82

6 Radical Extensions and Solvability by Radicals 89

6.1 Basic Results on Radical Extensions 89

6.2 Gauss's Theorem on Cyclotomic Polynomials 93

6.3 Abel's Theorem on Radical Extensions 104

6.4 Polynomials of Prime Degree 109

7 General Polynomials and the Beginnings of Galois Theory 117

7.1 General Polynomials 117

7.2 The Beginnings of Galois Theory 124

8 Classical Galois Theory According to Galois 135

9 Modern Galois Theory 151

9.1 Galois Theory and Finite Extensions 152

9.2 Galois Theory and Splitting Fields 156

10 Cyclic Extensions and Cyclotomic Fields 171

10.1 Cyclic Extensions 171

10.2 Cyclotomic Fields 179

11 Galois's Criterion for Solvability of Polynomials by Radicals 185

12 Polynomials of Prime degree 192

13 Periods of Roots of Unity 200

14 Denesting Radicals 225

15 Classical Formulas Revisited 231

15.1 General Quadratic Polynomial 231

15.2 General Cubic Polynomial 233

15.3 General Quartic Polynomial 236

Appendix A Cosets and Group Actions 245

Appendix B Cyclic Groups 249

Appendix C Solvable Groups 254

Appendix D Permutation Groups 261

Appendix E Finite fields and Number Theory 270

Appendix F Further Reading 274

References 277

Index 281

Erscheint lt. Verlag 22.5.2012
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Algebra • Angewandte Mathematik • Applied mathematics • Galoissche Theorie • Geschichte der Mathematik • History of Mathematics • Mathematics • Mathematik
ISBN-10 1-118-33667-4 / 1118336674
ISBN-13 978-1-118-33667-0 / 9781118336670
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 1,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich