Introduction to Abstract Algebra (eBook)

eBook Download: EPUB
2012 | 4. Auflage
560 Seiten
Wiley (Verlag)
978-1-118-31173-8 (ISBN)

Lese- und Medienproben

Introduction to Abstract Algebra -  W. Keith Nicholson
Systemvoraussetzungen
124,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Praise for the Third Edition "e;. . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."e; Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.

W. KEITH NICHOLSON, PhD, is Professor in the Department of Mathematics and Statistics at the University of Calgary, Canada. He has published extensively in his areas of research interest, which include clean rings, morphic rings and modules, and quasi-morphic rings. Dr. Nicholson is the coauthor of Modern Algebra with Applications, Second Edition, also published by Wiley.

PREFACE ix

ACKNOWLEDGMENTS xvii

NOTATION USED IN THE TEXT xix

A SKETCH OF THE HISTORY OF ALGEBRA TO 1929 xxiii

0 Preliminaries 1

0.1 Proofs / 1

0.2 Sets / 5

0.3 Mappings / 9

0.4 Equivalences / 17

1 Integers and Permutations 23

1.1 Induction / 24

1.2 Divisors and Prime Factorization / 32

1.3 Integers Modulo n / 42

1.4 Permutations / 53

1.5 An Application to Cryptography / 67

2 Groups 69

2.1 Binary Operations / 70

2.2 Groups / 76

2.3 Subgroups / 86

2.4 Cyclic Groups and the Order of an Element / 90

2.5 Homomorphisms and Isomorphisms / 99

2.6 Cosets and Lagrange's Theorem / 108

2.7 Groups of Motions and Symmetries / 117

2.8 Normal Subgroups / 122

2.9 Factor Groups / 131

2.10 The Isomorphism Theorem / 137

2.11 An Application to Binary Linear Codes / 143

3 Rings 159

3.1 Examples and Basic Properties / 160

3.2 Integral Domains and Fields / 171

3.3 Ideals and Factor Rings / 180

3.4 Homomorphisms / 189

3.5 Ordered Integral Domains / 199

4 Polynomials 202

4.1 Polynomials / 203

4.2 Factorization of Polynomials Over a Field / 214

4.3 Factor Rings of Polynomials Over a Field / 227

4.4 Partial Fractions / 236

4.5 Symmetric Polynomials / 239

4.6 Formal Construction of Polynomials / 248

5 Factorization in Integral Domains 251

5.1 Irreducibles and Unique Factorization / 252

5.2 Principal Ideal Domains / 264

6 Fields 274

6.1 Vector Spaces / 275

6.2 Algebraic Extensions / 283

6.3 Splitting Fields / 291

6.4 Finite Fields / 298

6.5 Geometric Constructions / 304

6.6 The Fundamental Theorem of Algebra / 308

6.7 An Application to Cyclic and BCH Codes / 310

7 Modules over Principal Ideal Domains 324

7.1 Modules / 324

7.2 Modules Over a PID / 335

8 p-Groups and the Sylow Theorems 349

8.1 Products and Factors / 350

8.2 Cauchy's Theorem / 357

8.3 Group Actions / 364

8.4 The Sylow Theorems / 371

8.5 Semidirect Products / 379

8.6 An Application to Combinatorics / 382

9 Series of Subgroups 388

9.1 The Jordan-H¨older Theorem / 389

9.2 Solvable Groups / 395

9.3 Nilpotent Groups / 401

10 Galois Theory 412

10.1 Galois Groups and Separability / 413

10.2 The Main Theorem of Galois Theory / 422

10.3 Insolvability of Polynomials / 434

10.4 Cyclotomic Polynomials and Wedderburn's Theorem /
442

11 Finiteness Conditions for Rings and Modules 447

11.1 Wedderburn's Theorem / 448

11.2 The Wedderburn-Artin Theorem / 457

Appendices 471

Appendix A Complex Numbers / 471

Appendix B Matrix Algebra / 478

Appendix C Zorn's Lemma / 486

Appendix D Proof of the Recursion Theorem / 490

BIBLIOGRAPHY 492

SELECTED ANSWERS 495

INDEX 523

"This could also be an excellent adjunct to more
theoretically oriented textbooks used in more intensive
courses." (Computing Reviews, 5 November
2012)

Erscheint lt. Verlag 23.2.2012
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Technik
Schlagworte Abstrakte Algebra • Algebra • Angewandte Mathematik • Applied mathematics • Mathematics • Mathematik • Modern/Abstract Algebra • Moderne u. abstrakte Algebra
ISBN-10 1-118-31173-6 / 1118311736
ISBN-13 978-1-118-31173-8 / 9781118311738
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 6,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich