Numerical Issues in Statistical Computing for the Social Scientist (eBook)
324 Seiten
John Wiley & Sons (Verlag)
978-0-471-47574-3 (ISBN)
Addressing the current deficiency in the literature on statistical methods as they apply to the social and behavioral sciences, Numerical Issues in Statistical Computing for the Social Scientist seeks to provide readers with a unique practical guidebook to the numerical methods underlying computerized statistical calculations specific to these fields. The authors demonstrate that knowledge of these numerical methods and how they are used in statistical packages is essential for making accurate inferences. With the aid of key contributors from both the social and behavioral sciences, the authors have assembled a rich set of interrelated chapters designed to guide empirical social scientists through the potential minefield of modern statistical computing.
Uniquely accessible and abounding in modern-day tools, tricks, and advice, the text successfully bridges the gap between the current level of social science methodology and the more sophisticated technical coverage usually associated with the statistical field.
Highlights include:
* A focus on problems occurring in maximum likelihood estimation
* Integrated examples of statistical computing (using software packages such as the SAS, Gauss, Splus, R, Stata, LIMDEP, SPSS, WinBUGS, and MATLAB¯®)
* A guide to choosing accurate statistical packages
* Discussions of a multitude of computationally intensive statistical approaches such as ecological inference, Markov chain Monte Carlo, and spatial regression analysis
* Emphasis on specific numerical problems, statistical procedures, and their applications in the field
* Replications and re-analysis of published social science research, using innovative numerical methods
* Key numerical estimation issues along with the means of avoiding common pitfalls
* A related Web site includes test data for use in demonstrating numerical problems, code for applying the original methods described in the book, and an online bibliography of Web resources for the statistical computation
Designed as an independent research tool, a professional reference, or a classroom supplement, the book presents a well-thought-out treatment of a complex and multifaceted field.
MICAH ALTMAN is Associate Director of the Harvard-MIT Data Center in Cambridge, Massachusetts. JEFF GILL is Associate Professor of Political Science at the University of California, Davis. MICHAEL P. McDONALD is Assistant Professor of Government and Politics at George Mason University in Fairfax, Virginia.
Preface.
1. Introduction: Consequences of Numerical Inaccuracy.
2. Sources of Inaccuracy in Statistical Computation.
3. Evaluating Statistical Software.
4. Robust Inference.
5. Numerical Issues in Markov Chain Monte Carlo Estimation.
6. Numerical Issues Involved in Hessian Matrices (Jeff Gill& Gary King).
7. Numerical Behavior of King's EI Method.
8. Some Details of Nonlinear Estimation (B. D. McCullough).
9. Spatial Regression Models (James P. LeSage).
10. Convergence Problems in Logistic Regression (PaulAllison).
11. Recommendations for Replication and AccurateAnalysis.
Bibliography.
Author Index.
Subject Index.
"Uniquely accessible and abounding in modern-day tools, tricks, and
advice, the text successfully bridges the gap between the current
level of social science methodology and the more sophisticated
technical coverage." (Zentralblatt Math 1130, May 2008)
"Clarity of presentations is excellent. Applied statisticians
and computer scientists will like this book and find it very
useful." (Journal of Statistical Computation and Simulation,
November 2005)
"[The authors] ...have succeeded in providing...a good
understanding of the potential pitfalls involved in the
implementation of methodology computationally, and...good advice on
dealing with the problems that can arise." (Statistics in
Medical Research, June 2005)
"This book provides the researcher with an overview of the
issues involved in the implementation and computation of common
statistical procedures...." (Statistical Methods in
Medical Research, Vol. 14, 2005)
"...this book is a good reference for social scientists that
are involved in computational statistics." (Journal of
Statistical Software, April 2005)
"...timely and interesting, and on the whole provides a good
balance of theory, application, and computation."
(Technometrics, May 2005)
"...an excellent text. It has the potential to be enormously
influential across the social sciences...It should be required
reading for everyone who performs statistical computing at the
advanced level..." (Journal of the American Statistical
Association, June 2005)
"...a compact guide to the voluminous literature on
optimisation, numerical analysis, and computational statistics.
This is no small achievement." (Statistical Software
Newsletter in Computational Statistics and Data Analysis)
"...a very important one for researchers, social scientists,
and...graduate and post-graduate students in various
disciplines..." (Computing Reviews.com, July 6, 2004)
"This comprehensive research and guidebook by Altman, Gill, and
McDonald offers to social scientists modern tools and tricks
previously lacking in other works." (Choice, June
2004, Vol. 41 No. 10)
Erscheint lt. Verlag | 15.2.2004 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Sozialwissenschaften ► Soziologie ► Empirische Sozialforschung | |
Technik | |
Schlagworte | Allg. Naturwissenschaft • Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics - Models • General Science • Statistics • Statistics - Text & Reference • Statistik • Statistik / Lehr- u. Nachschlagewerke |
ISBN-10 | 0-471-47574-2 / 0471475742 |
ISBN-13 | 978-0-471-47574-3 / 9780471475743 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich