Algebra and Number Theory (eBook)

An Integrated Approach
eBook Download: PDF
2011 | 1. Auflage
538 Seiten
John Wiley & Sons (Verlag)
978-0-470-64053-1 (ISBN)

Lese- und Medienproben

Algebra and Number Theory - Martyn R. Dixon, Leonid A. Kurdachenko, Igor Ya Subbotin
Systemvoraussetzungen
141,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Explore the main algebraic structures and number systems that
play a central role across the field of mathematics

Algebra and number theory are two powerful branches of modern
mathematics at the forefront of current mathematical research, and
each plays an increasingly significant role in different branches
of mathematics, from geometry and topology to computing and
communications. Based on the authors' extensive experience within
the field, Algebra and Number Theory has an innovative
approach that integrates three disciplines--linear algebra,
abstract algebra, and number theory--into one comprehensive
and fluid presentation, facilitating a deeper understanding of the
topic and improving readers' retention of the main concepts.

The book begins with an introduction to the elements of set
theory. Next, the authors discuss matrices, determinants, and
elements of field theory, including preliminary information related
to integers and complex numbers. Subsequent chapters explore key
ideas relating to linear algebra such as vector spaces, linear
mapping, and bilinear forms. The book explores the development of
the main ideas of algebraic structures and concludes with
applications of algebraic ideas to number theory.

Interesting applications are provided throughout to demonstrate
the relevance of the discussed concepts. In addition, chapter
exercises allow readers to test their comprehension of the
presented material.

Algebra and Number Theory is an excellent book for
courses on linear algebra, abstract algebra, and number theory at
the upper-undergraduate level. It is also a valuable reference for
researchers working in different fields of mathematics, computer
science, and engineering as well as for individuals preparing for a
career in mathematics education.

MARTYN R. DIXON, PHD, is Professor in the Department of Mathematics at the University of Alabama, Tuscaloosa. He has authored more than sixty published journal articles on infinite group theory, formation theory and Fitting classes, wreath products, and automorphism groups. LEONID A. KURDACHENKO, PHD, is Distinguished Professor and Chair of the Department of Algebra at the Dnepropetrovsk National University (Ukraine). Dr. Kurdachenko has authored more than 150 journal articles on the topics of infinite-dimensional linear groups, infinite groups, and module theory. IGOR YA. SUBBOTIN, PHD, is Professor in the Department of Mathematics and Natural Sciences at National University (California). Dr. Subbotin is the author of more than 100 published journal articles on group theory, cybernetics, and mathematics education.

Preface ix

Chapter 1 Sets 1

1.1 Operations on Sets 1

Exercise Set 1.1 6

1.2 Set Mappings 8

Exercise Set 1.2 19

1.3 Products of Mappings 20

Exercise Set 1.3 26

1.4 Some Properties of Integers 28

Exercise Set 1.4 39

Chapter 2 Matrices and Determinants 41

2.1 Operations on Matrices 41

Exercise Set 2.1 52

2.2 Permutations of Finite Sets 54

Exercise Set 2.2 64

2.3 Determinants of Matrices 66

Exercise Set 2.3 77

2.4 Computing Determinants 79

Exercise Set 2.4 91

2.5 Properties of the Product of Matrices 93

Exercise Set 2.5 103

Chapter 3 Fields 105

3.1 Binary Algebraic Operations 105

Exercise Set 3.1 118

3.2 Basic Properties of Fields 119

Exercise Set 3.2 129

3.3 The Field of Complex Numbers 130

Exercise Set 3.3 144

Chapter 4 Vector Spaces 145

4.1 Vector Spaces 146

Exercise Set 4.1 158

4.2 Dimension 159

Exercise Set 4.2 172

4.3 The Rank of a Matrix 174

Exercise Set 4.3 181

4.4 Quotient Spaces 182

Exercise Set 4.4 186

Chapter 5 Linear Mappings 187

5.1 Linear Mappings 187

Exercise Set 5.1 199

5.2 Matrices of Linear Mappings 200

Exercise Set 5.2 207

5.3 Systems of Linear Equations 209

Exercise Set 5.3 215

5.4 Eigenvectors and Eigenvalues 217

Exercise Set 5.4 223

Chapter 6 Bilinear Forms 226

6.1 Bilinear Forms 226

Exercise Set 6.1 234

6.2 Classical Forms 235

Exercise Set 6.2 247

6.3 Symmetric Forms over R 250

Exercise Set 6.3 257

6.4 Euclidean Spaces 259

Exercise Set 6.4 269

Chapter 7 Rings 272

7.1 Rings, Subrings, and Examples 272

Exercise Set 7.1 287

7.2 Equivalence Relations 288

Exercise Set 7.2 295

7.3 Ideals and Quotient Rings 297

Exercise Set 7.3 303

7.4 Homomorphisms of Rings 303

Exercise Set 7.4 313

7.5 Rings of Polynomials and Formal Power Series 315

Exercise Set 7.5 327

7.6 Rings of Multivariable Polynomials 328

Exercise Set 7.6 336

Chapter 8 Groups 338

8.1 Groups and Subgroups 338

Exercise Set 8.1 348

8.2 Examples of Groups and Subgroups 349

Exercise Set 8.2 358

8.3 Cosets 359

Exercise Set 8.3 364

8.4 Normal Subgroups and Factor Groups 365

Exercise Set 8.4 374

8.5 Homomorphisms of Groups 375

Exercise Set 8.5 382

Chapter 9 Arithmetic Properties of Rings 384

9.1 Extending Arithmetic to Commutative Rings 384

Exercise Set 9.1 399

9.2 Euclidean Rings 400

Exercise Set 9.2 404

9.3 Irreducible Polynomials 406

Exercise Set 9.3 415

9.4 Arithmetic Functions 416

Exercise Set 9.4 429

9.5 Congruences 430

Exercise Set 9.5 446

Chapter 10 The Real Number System 448

10.1 The Natural Numbers 448

10.2 The Integers 458

10.3 The Rationals 468

10.4 The Real Numbers 477

Answers to Selected Exercises 489

Index 513

"The book is well-written and covers, with plenty of
exercises, the material needed in the three aforementioned courses,
albeit in a new order." (Zentralblatt MATH, 1
December 2012)
"However, instructors contemplating such a unified approach should
give this book serious consideration. Recommended. Upper-division
undergraduates through researchers/faulty." (Choice , 1 April 2011)

Erscheint lt. Verlag 15.7.2011
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Arithmetik / Zahlentheorie
Technik
Schlagworte Computer Science • Informatik • linear algebra • Lineare Algebra • Mathematics • Mathematik • Number Theory • Zahlentheorie
ISBN-10 0-470-64053-7 / 0470640537
ISBN-13 978-0-470-64053-1 / 9780470640531
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 19,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich