Time Series (eBook)
336 Seiten
John Wiley & Sons (Verlag)
978-1-118-03071-4 (ISBN)
time series, now featuring S-Plus® and R software
Time Series: Applications to Finance with R and S-Plus®,
Second Edition is designed to present an in-depth introduction to
the conceptual underpinnings and modern ideas of time series
analysis. Utilizing interesting, real-world applications and the
latest software packages, this book successfully helps readers
grasp the technical and conceptual manner of the topic in order to
gain a deeper understanding of the ever-changing dynamics of the
financial world.
With balanced coverage of both theory and applications, this
Second Edition includes new content to accurately reflect the
current state-of-the-art nature of financial time series analysis.
A new chapter on Markov Chain Monte Carlo presents Bayesian methods
for time series with coverage of Metropolis-Hastings algorithm,
Gibbs sampling, and a case study that explores the relevance of
these techniques for understanding activity in the Dow Jones
Industrial Average. The author also supplies a new presentation of
statistical arbitrage that includes discussion of pairs trading and
cointegration. In addition to standard topics such as forecasting
and spectral analysis, real-world financial examples are used to
illustrate recent developments in nonstandard techniques,
including:
* Nonstationarity
* Heteroscedasticity
* Multivariate time series
* State space modeling and stochastic volatility
* Multivariate GARCH
* Cointegration and common trends
The book's succinct and focused organization allows readers to
grasp the important ideas of time series. All examples are
systematically illustrated with S-Plus® and R software,
highlighting the relevance of time series in financial
applications. End-of-chapter exercises and selected solutions allow
readers to test their comprehension of the presented material, and
a related Web site features additional data sets.
Time Series: Applications to Finance with R and S-Plus® is
an excellent book for courses on financial time series at the
upper-undergraduate and beginning graduate levels. It also serves
as an indispensible resource for practitioners working with
financial data in the fields of statistics, economics, business,
and risk management.
NGAI HANG CHAN, PhD, is Head and Chair Professor of Statistics at the Chinese University of Hong Kong. He has published extensively in the areas of time series, statistical finance, econometrics, risk management, and stochastic processes. A Fellow of the Institute of Mathematical Statistics and the American Statistical Association, Dr. Chan is the coauthor of Simulation Techniques in Financial Risk Management, also published by Wiley.
List of Figures.
List of Tables.
Preface.
Preface to the First Edition.
1 Introduction.
1.1 Basic Description.
1.2 Simple Descriptive Techniques.
1.3 Transformations.
1.4 Example.
1.5 Conclusions.
1.6 Exercises.
2 Probability Models.
2.1 Introduction.
2.2 Stochastic Processes.
2.3 Examples.
2.4 Sample Correlation Function.
2.5 Exercises.
3 Autoregressive Moving Average Models.
3.1 Introduction.
3.2 Moving Average Models.
3.3 Autoregressive Models.
3.4 ARMA Models.
3.5 ARIMA Models.
3.6 Seasonal ARIMA.
3.7 Exercises.
4 Estimation in the Time Domain.
4.1 Introduction.
4.2 Moment Estimators.
4.3 Autoregressive Models.
4.4 Moving Average Models.
4.5 ARMA Models.
4.6 Maximum Likelihood Estimates.
4.7 Partial ACF.
4.8 Order Selections.
4.9 Residual Analysis.
4.10 Model Building.
4.11 Exercises.
5 Examples in SPLUS andR.
5.1 Introduction.
5.2 Example 1.
5.3 Example 2.
5.4 Exercises.
6 Forecasting.
6.1 Introduction.
6.2 Simple Forecasts.
6.3 Box and Jenkins Approach.
6.4 Treasury Bill Example.
6.5 Recursions.
6.6 Exercises.
7 Spectral Analysis.
7.1 Introduction.
7.2 Spectral Representation Theorems.
7.3 Periodogram.
7.4 Smoothing of Periodogram.
7.5 Conclusions.
7.6 Exercises.
8 Nonstationarity.
8.1 Introduction.
8.2 Nonstationarity in Variance.
8.3 Nonstationarity in Mean: Random Walk with Drift.
8.4 Unit Root Test.
8.5 Simulations.
8.6 Exercises.
9 Heteroskedasticity.
9.1 Introduction.
9.2 ARCH.
9.3 GARCH.
9.4 Estimation and Testing for ARCH.
9.5 Example of Foreign Exchange Rates.
9.6 Exercises.
10 Multivariate Time Series.
10.1 Introduction.
10.2 Estimation of mu and Gamma.
10.3 Multivariate ARMA Processes.
10.4 Vector AR Models.
10.5 Example of Inferences for VAR.
10.6 Exercises.
11 State Space Models.
11.1 Introduction.
11.2 State Space Representation.
11.3 Kalman Recursions.
11.4 Stochastic Volatility Models.
11.5 Example of Kalman Filtering of Term Structure.
11.6 Exercises.
12 Multivariate GARCH.
12.1 Introduction.
12.2 General Model.
12.3 Quadratic Form.
12.4 Example of Foreign Exchange Rates.
12.5 Conclusions.
12.6 Exercises.
13 Cointegrations and Common Trends.
13.1 Introduction.
13.2 Definitions and Examples.
13.3 Error Correction Form.
13.4 Granger's Representation Theorem.
13.5 Structure of Cointegrated Systems.
13.6 Statistical Inference for Cointegrated Systems.
13.7 Example of Spot Index and Futures.
13.8 Conclusions.
13.9 Exercises.
14 Markov Chain Monte Carlo Methods.
14.1 Introduction.
14.2 Bayesian Inference.
14.3 Markov Chain Monte Carlo.
14.4 Exercises.
15 Statistical Arbitrage.
15.1 Introduction.
15.2 Pairs Trading.
15.3 Cointegration.
15.4 Simple Pairs Trading.
15.5 Cointegrations and Pairs Trading.
15.6 Hang Seng Index Components Example.
15.7 Exercises.
16 Answers to Selected Exercises.
16.1 Chapter 1.
16.2 Chapter 2.
16.3 Chapter 3.
16.4 Chapter 4.
16.5 Chapter 5.
16.6 Chapter 6.
16.7 Chapter 7.
16.8 Chapter 8.
16.9 Chapter 9.
16.10 Chapter 10.
16.11 Chapter 11.
16.12 Chapter 12.
16.13 Chapter 13.
16.14 Chapter 14.
16.15 Chapter 15.
References.
Subject Index.
Author Index.
"Both are on topics of intense interest among academicians and
financial practitioners. Their inclusoin makes the book more
up-to-date and hopefully entertains a broader spectrum of readers.
Upon many requests from users of the first edition, a new chapter
on solutions to selected exercises has also been prepared so as to
make the book more accessible to instructors and students alike."
(Mathematical Reviews, 2011)
Erscheint lt. Verlag | 26.1.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Finance & Investments • Financial Engineering • Finanztechnik • Finanz- u. Anlagewesen • Finanz- u. Wirtschaftsstatistik • Finanzwirtschaft • Statistics • Statistics for Finance, Business & Economics • Statistik • Time Series • Zeitreihen • Zeitreihenanalyse |
ISBN-10 | 1-118-03071-0 / 1118030710 |
ISBN-13 | 978-1-118-03071-4 / 9781118030714 |
Haben Sie eine Frage zum Produkt? |
Größe: 11,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich