Modeling Online Auctions (eBook)
336 Seiten
John Wiley & Sons (Verlag)
978-0-470-64259-7 (ISBN)
analyzing, and modeling online auction data
Online auctions are an increasingly important marketplace, as
the new mechanisms and formats underlying these auctions have
enabled the capturing and recording of large amounts of bidding
data that are used to make important business decisions. As a
result, new statistical ideas and innovation are needed to
understand bidders, sellers, and prices. Combining methodologies
from the fields of statistics, data mining, information systems,
and economics, Modeling Online Auctions introduces a new approach
to identifying obstacles and asking new questions using online
auction data.
The authors draw upon their extensive experience to introduce
the latest methods for extracting new knowledge from online auction
data. Rather than approach the topic from the traditional
game-theoretic perspective, the book treats the online auction
mechanism as a data generator, outlining methods to collect,
explore, model, and forecast data. Topics covered include:
* Data collection methods for online auctions and related issues
that arise in drawing data samples from a Web site
* Models for bidder and bid arrivals, treating the different
approaches for exploring bidder-seller networks
* Data exploration, such as integration of time series and
cross-sectional information; curve clustering; semi-continuous data
structures; and data hierarchies
* The use of functional regression as well as functional
differential equation models, spatial models, and stochastic models
for capturing relationships in auction data
* Specialized methods and models for forecasting auction prices
and their applications in automated bidding decision rule
systems
Throughout the book, R and MATLAB software are used for
illustrating the discussed techniques. In addition, a related Web
site features many of the book's datasets and R and MATLAB code
that allow readers to replicate the analyses and learn new methods
to apply to their own research.
Modeling Online Auctions is a valuable book for graduate-level
courses on data mining and applied regression analysis. It is also
a one-of-a-kind reference for researchers in the fields of
statistics, information systems, business, and marketing who work
with electronic data and are looking for new approaches for
understanding online auctions and processes.
Visit this book's companion website by clicking href="http://modelingonlineauctions.com/">here
WOLFGANG JANK, PhD, is Associate Professor of Management Science and Statistics in the Robert H. Smith School of Business at the University of Maryland, where he is also Director of the Center for Complexity in Business. He has published over seventy articles on statistics and data mining in electronic commerce, marketing, information systems, and operations management. Dr. Jank is the coauthor of Statistical Methods in e-Commerce Research (Wiley). GALIT SHMUELI, PhD, is Associate Professor of Statistics and Director of the eMarkets Research Lab in the Robert H. Smith School of Business at the University of Maryland. Her research focuses on statistical strategy and data mining methods for scientific research and real-world applications. Dr. Shmueli has published over sixty journal articles on statistical and data mining methods related to online auctions and biosurveillance. She is the coauthor of Statistical Methods in e-Commerce Research and Data Mining for Business Intelligence: Concepts, Techniques, and Applications in Microsoft Office Excel® with XLMiner®, Second Edition, both published by Wiley.
Preface.
Acknowledgments.
1 Introduction.
1.1 Online Auctions and Electronic Commerce.
1.2 Online Auctions and Statistical Challenges.
1.3 A Statistical Approach to Online Auction Research.
1.4 The Structure of this Book.
1.5 Data and Code Availability.
2 Obtaining Online Auction Data.
2.1 Collecting Data from the Web.
2.2 Web Data Collection and Statistical Sampling.
3 Exploring Online Auction Data.
3.1 Bid Histories: Bids versus "Current Price" Values.
3.2 Integrating Bid History Data With Cross-Sectional Auction
Information.
3.3 Visualizing Concurrent Auctions.
3.4 Exploring Price Evolution and Price Dynamics.
3.5 Combining Price Curves with Auction Information via
Interactive Visualization.
3.6 Exploring Hierarchical Information.
3.7 Exploring Price Dynamics via Curve Clustering.
3.8 Exploring Distributional Assumptions.
3.9 Exploring Online Auctions: Future Research Directions.
4 Modeling Online Auction Data.
4.1 Modeling Basics (Representing the Price Process).
4.2 Modeling The Relation Between Price Dynamics and Auction
Information.
4.3 Modeling Auction Competition.
4.4 Modeling Bid and Bidder Arrivals.
4.5 Modeling Auction Networks.
5 Forecasting Online Auctions.
5.1 Forecasting Individual Auctions.
5.2 Forecasting Competing Auctions.
5.3 Automated Bidding Decisions.
Bibliography.
Index.
"Modeling online auctions is a valuable book for graduate-level courses on data mining and applied regression analysis." (Mathematical Reviews, 2011)
"The referred volume offers a detailed survey of methods and run of online auctions by means of detailed analysis of empirical and statistical data . . . the volume is completed by a rich bibliography and index." (Zentralblatt Math, 2010)
"Modeling Online Auctions is a valuable book for graduate-level courses on data mining and applied regression analysis. It is also a one-of-a-kind reference for researchers in the fields of statistics, information systems, business, and marketing who work with electronic data and are looking for new approaches for understanding online auctions and processes". (Dublin Business Wire, 27 October 2010)
Erscheint lt. Verlag | 20.5.2010 |
---|---|
Reihe/Serie | Statistics in Practice | Statistics in Practice |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Business & Management • Business Statistics & Math • Data Mining • Data Mining Statistics • Finanz- u. Wirtschaftsstatistik • Statistics • Statistics for Finance, Business & Economics • Statistik • Wirtschaftsmathematik u. -statistik • Wirtschaftsstatistik • Wirtschaft u. Management |
ISBN-10 | 0-470-64259-9 / 0470642599 |
ISBN-13 | 978-0-470-64259-7 / 9780470642597 |
Haben Sie eine Frage zum Produkt? |
Größe: 14,6 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich