Methods of Mathematical Physics, Volume 1 (eBook)

eBook Download: PDF
2008
Wiley-VCH (Verlag)
978-3-527-61722-7 (ISBN)

Lese- und Medienproben

Methods of Mathematical Physics, Volume 1 - Richard Courant, David Hilbert
Systemvoraussetzungen
144,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Since the first volume of this work came out in Germany in 1924, this book, together with its second volume, has remained standard in the field. Courant and Hilbert's treatment restores the historically deep connections between physical intuition and mathematical development, providing the reader with a unified approach to mathematical physics. The present volume represents Richard Courant's second and final revision of 1953.

David Hilbert (1862 - 1943) received his PhD from the University of Königsberg, Prussia (now Kaliningrad, Russia) in 1884. He remained there until 1895, after which he was appointed Professor of Mathematics at the University of Göttingen. He held this professorship for most of his life. Hilbert is recognized as one of the most influential mathematicians of the 19th and early 20th centuries. His own discoveries alone would have given him that honour, yet it was his leadership in the field of mathematics throughout his later life that distinguishes him. Hilbert's name is given to Infinite-Dimensional space, called Hilbert space, used as a conception for the mathematical analysis of the kinetic gas theory and the theory of radiations. Richard Courant (1888 - 1972) obtained his doctorate at the University of Göttingen in 1910. Here, he became Hilbert's assistant. He returned to Göttingen to continue his research after World War I, and founded and headed the university's Mathematical Institute. In 1933, Courant left Germany for England, from whence he went on to the United States after a year. In 1936, he became a professor at the New York University. Here, he headed the Department of Mathematics and was Director of the Institute of Mathematical Sciences - which was subsequently renamed the Courant Institute of Mathematical Sciences. Among other things, Courant is well remembered for his achievement regarding the finite element method, which he set on a solid mathematical basis and which is nowadays the most important way to solve partial differential equations numerically.

Partial table of contents:

THE ALGEBRA OF LINEAR TRANSFORMATIONS AND QUADRATIC FORMS.

Transformation to Principal Axes of Quadratic and Hermitian Forms.

Minimum-Maximum Property of Eigenvalues.

SERIES EXPANSION OF ARBITRARY FUNCTIONS.

Orthogonal Systems of Functions.

Measure of Independence and Dimension Number.

Fourier Series.

Legendre Polynomials.

LINEAR INTEGRAL EQUATIONS.

The Expansion Theorem and Its Applications.

Neumann Series and the Reciprocal Kernel.

The Fredholm Formulas.

THE CALCULUS OF VARIATIONS.

Direct Solutions.

The Euler Equations.

VIBRATION AND EIGENVALUE PROBLEMS.

Systems of a Finite Number of Degrees of Freedom.

The Vibrating String.

The Vibrating Membrane.

Green's Function (Influence Function) and Reduction of Differential Equations to Integral Equations.

APPLICATION OF THE CALCULUS OF VARIATIONS TO EIGENVALUE PROBLEMS.

Completeness and Expansion Theorems.

Nodes of Eigenfunctions.

SPECIAL FUNCTIONS DEFINED BY EIGENVALUE PROBLEMS.

Bessel Functions.

Asymptotic Expansions.

Additional Bibliography.

Index.

Erscheint lt. Verlag 26.9.2008
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik
Schlagworte Mathematical & Computational Physics • Mathematische Physik • Physics • Physik
ISBN-10 3-527-61722-1 / 3527617221
ISBN-13 978-3-527-61722-7 / 9783527617227
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 23,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich