New Approach to Differential Geometry using Clifford's Geometric Algebra (eBook)
XVII, 465 Seiten
Birkhauser Boston (Verlag)
978-0-8176-8283-5 (ISBN)
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Preface.- Introduction.- Clifford Algebra in Euclidean 3-Space.- Clifford Algebra in Minkowski 4-Space.- Clifford Algebra in Flat n-Space.- Curved Spaces.- The Gauss-Bonnet Formula.- Non-Euclidean (Hyperbolic) Geometry.- Some Extrinsic Geometry in E^n.- Ruled Surfaces Continued.- Lines of Curvature.- Minimal Surfaces.- Some General Relativity.- Matrix Representation of a Clifford Algebra.- Construction of Coordinate Dirac Matrices.- A Few Terms of the Taylor's Series for the Urdī-Copernican Model for the Outer Planets.- A Few Terms of the Taylor's Series for Kepler's Orbits.- References.- Index.
Erscheint lt. Verlag | 9.12.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
Schlagworte | Clifford Algebra • curved spaces • Differential Geometry • Gauss-Bonnet formula • General relativity • Non-Euclidean geometry • Taylor's series |
ISBN-10 | 0-8176-8283-X / 081768283X |
ISBN-13 | 978-0-8176-8283-5 / 9780817682835 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich