Hyperspectral Data Compression (eBook)

eBook Download: PDF
2006 | 2006
XII, 418 Seiten
Springer US (Verlag)
978-0-387-28600-6 (ISBN)

Lese- und Medienproben

Hyperspectral Data Compression -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.

James A. Storer is Chair of the IEEE Data Compression Conference.
Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.

James A. Storer is Chair of the IEEE Data Compression Conference.

An Architecture for the Compression of Hyperspectral Imagery.- Lossless Predictive Compression of Hyperspectral Images.- Lossless Hyperspectral Image Compression via Linear Prediction.- Lossless Compression of Ultraspectral Sounder Data.- Locally Optimal Partitioned Vector Quantization of Hyperspectral Data.- Near-Lossless Compression of Hyperspectral Imagery Through Crisp/Fuzzy Adaptive DPCM.- Joint Classification and Compression of Hyperspectral Images.- Predictive Coding of Hyperspectral Images.- Coding of Hyperspectral Imagery with Trellis-Coded Quantization.- Three-Dimensional Wavelet-Based Compression of Hyperspectral Images.- Spectral/Spatial Hyperspectral Image Compression.- Compression of Earth Science Data with JPEG2000.- Spectral Ringing Artifacts in Hyperspectral Image Data Compression.

Erscheint lt. Verlag 3.6.2006
Zusatzinfo XII, 418 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Grafik / Design
Naturwissenschaften Geowissenschaften Geografie / Kartografie
Technik
Schlagworte 3D • 3D wavelet-based image compression • Data Compression • Hyperspectral Image Data Compression • Hyperspectral Imagery • JPEG • Lossless Compression • Near-Lossless Compression
ISBN-10 0-387-28600-4 / 0387286004
ISBN-13 978-0-387-28600-6 / 9780387286006
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 46,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
34,93