Tissue Engineering -  Clemens van Blitterswijk,  Jan De Boer,  J.D. de Bruijn,  Ranieri Cancedda,  Jeffrey Hubbell,  Anders Lindahl,  Jerome Sohier,  Peter Thomsen,  David F. Williams

Tissue Engineering (eBook)

eBook Download: PDF
2008 | 1. Auflage
760 Seiten
Elsevier Science (Verlag)
978-0-08-055919-3 (ISBN)
Systemvoraussetzungen
96,44 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students and professionals who are developing their knowledge of this important topic. Key topics covered include stem cells; morphogenesis and cellular signaling; the extracellular matrix; biocompatibility; scaffold design and fabrication; controlled release strategies; bioreactors; tissue engineering of skin, cartilage, bone and organ systems; and ethical issues.
• Covers all the essentials from tissue homeostasis and biocompatibility to cardiovascular engineering and regulations
• 22 chapters from internationally recognized authors, provide a comprehensive introduction for engineers and life scientists, including biomedical engineers, chemical and process engineers, materials scientists, biologists and medical students
• Full colour throughout, with clear development of understanding through frequent examples, experimental approaches and the latest research and developments.

Jan de Boer is a professor of Applied Cell Biology at the Laboratory of Cell Biology-Inspired Tissue Engineering, University of Maastricht, The Netherlands, where his team performs innovative research on molecular and cellular engineering of bone tissue. The research program is characterized by a holistic approach to both discovery and application, aiming at combining high throughput technologies, computational modeling and experimental cell biology to streamline the wealth of biological knowledge to real clinical applications. He is chair of the Netherlands Society of Biomaterials and Tissue Engineering, and co-founder of the biotech company Materiomics B.V.
Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students and professionals who are developing their knowledge of this important topic. Key topics covered include stem cells; morphogenesis and cellular signaling; the extracellular matrix; biocompatibility; scaffold design and fabrication; controlled release strategies; bioreactors; tissue engineering of skin, cartilage, bone and organ systems; and ethical issues. - Covers all the essentials from tissue homeostasis and biocompatibility to cardiovascular engineering and regulations- 22 chapters from internationally recognized authors, provide a comprehensive introduction for engineers and life scientists, including biomedical engineers, chemical and process engineers, materials scientists, biologists and medical students- Full colour throughout, with clear development of understanding through frequent examples, experimental approaches and the latest research and developments

Front cover 1
Tissue engineering 4
Copyright page 5
Contents 6
List of contributors 8
Foreword 12
Tissue engineering – an introduction 14
Chapter 1 Stem cells 38
Chapter objectives 38
1.1 What defines a stem cell? 39
1.2 Embryonic stem cells 46
1.3 Adult stem cells 54
1.4 Future perspective 60
1.5 Snapshot summary 61
References 61
Chapter 2 Morphogenesis, generation of tissue in the embryo 64
Chapter objectives 64
2.1 Introduction 65
2.2 Cardiac development 71
2.3 Blood vessel development 75
2.4 Development of the peripheral nerve tissue 79
2.5 Embryonic skin development 84
2.6 Skeletal formation 92
2.7 Future developments 101
2.8 Summary 102
References 103
Chapter 3 Tissue homeostasis 110
Chapter objectives 110
3.1 Introduction 111
3.2 Tissues with no potential of regeneration 113
3.3 Tissues with slow regeneration time 113
3.4 Tissues with a high capacity of regeneration 114
3.5 Tissues where regeneration was not considered – the paradigm shift in tissue regeneration 116
3.6 Consequence of regeneration potential for the tissue engineering concept 118
3.7 Cell migration of TA cells 122
3.8 Future developments 123
3.9 Summary 123
References 123
Chapter 4 Cellular signaling 126
Chapter objectives 126
4.1 General introduction 127
4.2 Cellular signaling in skin biology 131
4.3 Cellular signaling in vascular biology 136
4.4 Cellular signaling in bone biology 141
4.5 Cellular signaling in cartilage biology 145
4.6 Future developments: Understanding and implementing principles of cellular signaling in tissue engineering 152
4.7 Summary 155
References 155
Chapter 5 The extracellular matrix as a biologic scaffold for tissue engineering 158
Chapter objectives 158
5.1 Introduction 159
5.2 Extracellular matrix 160
5.3 Preparation of ECM 168
5.4 Biologic activities of ECM scaffolds 170
5.5 Commercially available scaffolds composed of extracellular matrix 174
5.6 Future considerations 174
5.7 Summary 177
References 177
Chapter 6 Natural polymers in tissue engineering applications 182
Chapter objectives 182
6.1 Introduction 183
6.2 Natural polymers 183
6.3 Polysaccharides 186
6.4 Proteins 204
6.5 Polyhydroxyalkanoates 215
6.6 Future developments 217
6.7 Summary 217
References 217
Chapter 7 Degradable polymers for tissue engineering 230
Chapter objectives 230
7.1 Introduction and background 231
7.2 Synthesis and properties of polymers 232
7.3 (Bio)degradable polymers 238
7.4 Mechanisms of polymer degradation and erosion 241
7.5 Future perspectives 254
7.6 Summary 254
References 254
Chapter 8 Degradation of bioceramics 260
Chapter objectives 260
8.1 Introduction 261
8.2 Degradation mechanisms of calcium phosphate ceramics 264
8.3 Degradation mechanisms of bioactive glasses 271
8.4. Translation to bone tissue engineering systems 278
8.5 Future developments: tailoring the resorption kinetic of bioceramics for optimal bone regeneration 283
8.6 Summary 286
References 286
Chapter 9 Biocompatibility 292
Chapter objectives 292
9.1 Introduction 293
9.2 The evolution of current concepts of biocompatibility 293
9.3 The agents of biocompatibility 294
9.4 Tissue engineering scaffolds and matrices 301
9.5 General discussion of biocompatibility in tissue engineering 311
9.6 Future perspectives 313
9.7 Summary 313
References 314
Chapter 10 Cell source 316
Chapter objectives 316
10.1 Evidence for the presence of stem cells in adult tissues 317
10.2 Hemopoietic stem cell niche(s) 319
10.3 Epithelial stem cell and their niches 321
10.4 Neuronal stem cell and their niches 325
10.5 Mesenchymal stem cells and their niches 326
10.6 Adult stem cells can cross lineage-specific boundaries 332
10.7 Expansion of the stem cell compartment through cell culture 333
10.8 Can we use allogeneic or xenogeneic stem cells? 335
10.9 Nuclear transfer and generation of 'self' embryonic stem cells 339
10.10 Conclusions and perspectives 339
10.11 Summary 340
References 341
Chapter 11 Cell culture: harvest, selection, expansion, and differentiation 344
Chapter objectives 364
11.1 Introduction 345
11.2 Harvest 346
11.3 Selection 350
11.4 Expansion 352
11.5 Differentiation 355
11.6 Future developments 359
11.7 Summary 359
References 360
Chapter 12 Cell nutrition 364
Chapter objectives 364
12.1 Introduction 365
12.2 Cell culture media 366
12.3 Directing cellular behavior by culture medium composition 370
12.4 Mass transport 374
12.5 Nutrient gradients in tissue engineering 378
12.6 Strategies to improve nutrient supply 380
12.7 Future development: experimental modeling of nutritional problems in tissue engineering 392
Acknowledgments 396
References 396
Chapter 13 Cryobiology 400
Chapter objectives 400
Abstract 401
13.1 Introduction to fundamentals of cryobiology 401
13.2 Technology based on the freezing concept 406
13.3 Vitrification technology 408
13.4 Safety issues in cryopreservation 419
13.5 Cryopreservation: practical aspects 422
13.6 Future considerations 434
13.7 Summary 434
References 435
Chapter 14 Scaffold design and fabrication 440
Chapter objectives 440
14.1 Introduction 441
14.2 Scaffold design 442
14.3 Scaffold fabrication 451
14.4 Textile technologies 463
14.5 Solid free-form fabrication 470
14.6 Conclusions 485
References 486
Chapter 15 Controlled release strategies in tissue engineering 492
Chapter objectives 492
15.1 Introduction 493
15.2 Bioactive factors admixed with matrices 499
15.3 Bioactive factors entrapped within gel matrices 502
15.4 Bioactive factors entrapped within hydrophobic scaffolds or microparticles 506
15.5 Bioactive factors bound to affinity sites within matrices 511
15.6 Bioactive factors covalently bound to matrices 512
15.7 Summary 515
References 516
Chapter 16 Bioreactors for tissue engineering 520
Chapter objectives 520
16.1 Introduction 521
16.2 Key functions of bioreactors in tissue engineering 521
16.3 Bioreactor design and development 529
16.4 Bioreactors as 3D in vitro model systems 532
16.5 Bioreactors in clinical applications 538
16.6 Future perspectives for bioreactors in tissue engineering 540
16.7 Summary 541
References 542
Chapter 17 Tissue engineering for skin transplantation 544
Chapter objectives 544
17.1 Introduction 545
17.2 Structure of the epidermis 545
17.3 Keratins 547
17.4 Structure of the dermo-epidermal junction 547
17.5 In vitro keratinocyte culture 549
17.6 Decreasing immunogenicity within cultured keratinocytes 552
17.7 Development of in vivo grafting 552
17.8 Failure of keratinocyte 'take' 553
17.9 Enhanced dermal grafting 554
17.10 The future of tissue-engineered skin 562
17.11 Summary 563
References 563
Chapter 18 Tissue engineering of cartilage 570
Chapter objectives 570
18.1 Introduction 571
18.2 Composition of adult hyaline human articular cartilage 572
18.3 Cartilage components 573
18.4 Pathophysiology of cartilage lesion development 577
18.5 Artificial induction of cartilage repair 578
18.6 What type of chondrogeneic cells are ideal for cartilage engineering? 582
18.7 Scaffolds in cartilage tissue engineering 584
18.8 Bioreactors in cartilage tissue engineering 589
18.9 Growth factors that stimulate chondrogenesis 591
18.10 Future developments 592
18.11 Summary 592
References 593
Chapter 19 Tissue engineering of bone 596
Chapter objectives 596
19.1 Introduction: bone 597
19.2 Strategies for bone tissue engineering 604
19.3 Steps in bone tissue engineering research – from idea to patient 618
19.4 Current status of bone tissue engineering 632
19.5 Summary 636
References 638
Chapter 20 Tissue engineering of the nervous system 648
Chapter objectives 648
20.1 Introduction 649
20.2 Peripheral nerve 649
20.3 CNS: spinal cord 659
20.4 CNS: optic nerve injury model 672
20.5 CNS: retina 673
20.6 CNS: brain 677
20.7 Animal models 678
20.8 Future approaches 679
20.9 Summary 680
References 681
Chapter 21 Tissue engineering of organ systems 686
Chapter objectives 686
21.1 Introduction 687
21.2 Urogenital tissue engineering 687
21.3 Liver tissue engineering 698
21.4 Lung tissue engineering 704
21.5 Gut tissue engineering 707
21.6 Pancreas tissue engineering 711
21.7 Future developments 715
21.8 Summary 716
References 716
Chapter 22 Ethical issues in tissue engineering 722
Chapter objectives 722
22.1 Introduction 723
22.2 Morality, ethics and values 725
22.3 Moral problems relating to the source of material for tissue engineering 727
22.4 Further moral considerations 738
22.5 Some questions for the future 739
Notes 739
References 740
Multiple Choice Questions 742
Index 764
A 764
B 764
C 766
D 768
E 768
F 769
G 769
H 770
I 770
K 771
L 771
M 771
N 771
O 772
P 772
R 774
S 774
T 775
U 776
V 776
W 777
X 777
Z 777

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich