Co-Semigroups and Applications (eBook)
396 Seiten
Elsevier Science (Verlag)
978-0-08-053004-8 (ISBN)
The book is primarily addressed to graduate students and researchers in the field, but it would be of interest for both physicists and engineers. It should be emphasised that it is almost self-contained, requiring only a basic course in Functional Analysis and Partial Differential Equations.
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find their place into a monograph till now, mainly because they are very new. So, the book, although containing the main parts of the classical theory of Co-semigroups, as the Hille-Yosida theory, includes also several very new results, as for instance those referring to various classes of semigroups such as equicontinuous, compact, differentiable, or analytic, as well as to some nonstandard types of partial differential equations, i.e. elliptic and parabolic systems with dynamic boundary conditions, and linear or semilinear differential equations with distributed (time, spatial) measures. Moreover, some finite-dimensional-like methods for certain semilinear pseudo-parabolic, or hyperbolic equations are also disscussed. Among the most interesting applications covered are not only the standard ones concerning the Laplace equation subject to either Dirichlet, or Neumann boundary conditions, or the Wave, or Klein-Gordon equations, but also those referring to the Maxwell equations, the equations of Linear Thermoelasticity, the equations of Linear Viscoelasticity, to list only a few. Moreover, each chapter contains a set of various problems, all of them completely solved and explained in a special section at the end of the book.The book is primarily addressed to graduate students and researchers in the field, but it would be of interest for both physicists and engineers. It should be emphasised that it is almost self-contained, requiring only a basic course in Functional Analysis and Partial Differential Equations.
Cover 1
Contents 7
Preface 11
Chapter 1. Preliminaries 13
1.1. Vector-Valued Measurable Functions 13
1.2. The Bochner Integral 16
1.3. Basic Function Spaces 21
1.4. Functions of Bounded Variation 24
1.5. Sobolev Spaces 27
1.6. Unbounded Linear Operators 32
1.7. Elements of Spectral Analysis 36
1.8. Functional Calculus for Bounded Operators 39
1.9. Functional Calculus for Unbounded Operators 43
Problems 45
Notes 46
Chapter 2. Semigroups of Linear Operators 47
2.1. Uniformly Continuous Semigroups 47
2.2. Generators of Uniformly Continuous Semigroups 50
2.3. C0-Semigroups. General Properties 53
2.4. The Infinitesimal Generator 56
Problems 60
Notes 62
Chapter 3. Generation Theorems 63
3.1. The Hille-Yosida Theorem. Necessity 63
3.2. The Hille-Yosida Theorem. Sufficiency 66
3.3. The Feller-Miyadera-Phillips Theorem 68
3.4. The Lumer-Phillips Theorem 70
3.5. Some Consequences 73
3.6. Examples 75
3.7. The Dual of a C0-Semigroup 79
3.8. The Sun Dual of a C0-Semigroup 82
3.9. Stone Theorem 84
Problems 86
Notes 87
Chapter 4. Differential Operators Generating C0- Semigroups 89
4.1. The Laplace Operator with Dirichlet Boundary Condition 89
4.2. The Laplace Operator with Neumann Boundary Condition 95
4.3. The Maxwell Operator 96
4.4. The Directional Derivative 99
4.5. The Schrödinger Operator 102
4.6. The Wave Operator 103
4.7. The Airy Operator 107
4.8. The Equations of Linear Thermoelasticity 108
4.9. The Equations of Linear Viscoelasticity 110
Problems 113
Notes 115
Chapter 5. Approximation Problems and Applications 117
5.1. The Continuity of A .etA 117
5.2. The Chernoff and Lie-Trotter Formulae 122
5.3. A Perturbation Result 125
5.4. The Central Limit Theorem 126
5.5. Feynman Formula 129
5.6. The Mean Ergodic Theorem 133
Problems 138
Notes 139
Chapter 6. Some Special Classes of C0-Semigroups 141
6.1. Equicontinuous Semigroups 141
6.2. Compact Semigroups 145
6.3. Differentiable Semigroups 149
6.4. Semigroups with Symmetric Generators 156
6.5. The Linear Delay Equation 159
Problems 161
Notes 162
Chapter 7. Analytic Semigroups 163
7.1. Definition and Characterizations 163
7.2. The Heat Equation 168
7.3. The Stokes Equation 174
7.4. A Parabolic Problem with Dynamic Boundary Conditions 178
7.5. An Elliptic Problem with Dynamic Boundary Conditions 180
7.6. Fractional Powers of Closed Operators 182
7.7. Further Investigations in the Analytic Case 189
Problems 192
Notes 193
Chapter 8. The Nonhomogeneous Cauchy Problem 195
8.1. The Cauchy Problem u' = Au + f , u(a) =. 195
8.2. Smoothing Effect. The Hilbert Space Case 201
8.3. An Approximation Result 204
8.4. Compactness of the Solution Operator from LP(a, b X
8.5. The Case when ( .I – A) -1 is Compact 209
8.6. Compactness of the Solution Operator from L 1 (a, b X)
Problems 214
Notes 216
Chapter 9. Linear Evolution Problems with Measures as Data 217
9.1. The Problem du = {Au} dt + dg, u(a) =. 217
9.2. Regularity of £8 Solutions 222
9.3. A Characterization of £8 Solutions 225
9.4. Compactness of the £8 -Solution Operator 228
9.5. Evolution Equations with "Spatial" Measures as Data 232
Problems 235
Notes 237
Chapter 10. Some Nonlinear Cauchy Problems 239
10.1. Peano's Local Existence Theorem 239
10.2. The Problem u= f (t, u)+ g(t, u) 243
10.3. Saturated Solutions 248
10.4. The Klein-Gordon Equation 254
10.5. An Application to a Problem in Mechanics 257
Problems 259
Notes 260
Chapter 11. The Cauchy Problem for Semilinear Equations 261
11.1. The Problem u' = Au + f ( t , u) with f Lipschitz 261
11.2. The Problem u'= - Au + f (t, u) with f Continuous 265
11.3. Saturated Solutions 267
11.4. Asymptotic Behavior 273
11.5. The Klein-Gordon Equation Revisited 276
11.6. A Parabolic Semilinear Equation 277
Problems 279
Notes 280
Chapter 12. Semilinear Equations Involving Measures 281
12.1. The Problem du = {An} dt + dgu with u . gu Lipschitz 281
12.2. The Problem du - {An} dt + dgu with u . gu Continuous 285
12.3. Saturated £8-Solutions 288
12.4. The Case of Spatial Measures 294
12.5. Two Examples 296
12.6. One More Example 298
Problems 300
Notes 302
Appendix A. Compactness Results 303
A.1. Compact Operators 303
A.2. Compactness in C([a, b] X)
A.3. Compactness in C([a, b] Xw)
A.4. Compactness in LP(a, b X )
A.5. Compactness in LP(a, b X ) . Continued
A.6. The Superposition Operator 324
Problems 327
Notes 330
Solutions 331
Bibliography 373
List of Symbols 380
Subject Index 383
Erscheint lt. Verlag | 21.3.2003 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Technik | |
ISBN-10 | 0-08-053004-4 / 0080530044 |
ISBN-13 | 978-0-08-053004-8 / 9780080530048 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich