Microbes at Work (eBook)

From Wastes to Resources
eBook Download: PDF
2009 | 2010
VIII, 329 Seiten
Springer Berlin (Verlag)
978-3-642-04043-6 (ISBN)

Lese- und Medienproben

Microbes at Work -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Among the goals of environmentally sound waste treatment is the recycling of organic wastes. The most practiced options are composting and anaerobic digestion, both processes being carried out by microorganisms. This book provides an overview of the various ways microbes are doing their job and gives the reader an impression of their potential.

The sixteen chapters of this book summarize the advantages and disadvantages of treatment processes, whether they are aerobic like composting or work without oxygen like anaerobic digestion for biogas (methane) production. These chapters show the potential of microorganisms to create valuable resources from otherwise wasted materials. These resources include profitable organic, humus-like soil conditioners or fertilizer components which are often suppressive to plant diseases. Composts may thus improve soil carbon sequestration, or support sustainable agriculture by reducing the need for mineral fertilizers or pesticides. If anaerobic digestion is used, the biogas produced may replace fossil fuels. Thus, proper biological waste treatment with the help of microorganisms should contribute to a reduction of anthropogenic greenhouse gas production.

161216_1_En_BookFrontmatter_OnlinePDF 1
161216_1_En_1_Chapter_OnlinePDF 8
Chapter 1: Microbes in Aerobic and Anaerobic Waste Treatment 8
Introduction 9
The Substrates 9
Lignin 9
Cellulose 10
Hemicelluloses (Xylan, Pectin, Starch) 10
Microbial Cell Wall Components: Murein and Chitin 11
Aerobic or Anaerobic Degradation: Four-Phase Microbially Driven Processes 11
Composting 11
Mesophilic Phase (25-40°C) 12
Thermophilic Phase (35-65°C) 13
Cooling Phase (Second Mesophilic Phase) 14
Maturation and Curing Phase 14
Anaerobic Digestion 15
Depolymerization - Hydrolysis 16
Fermentation (Acidogenesis) 18
Acetogenesis 21
Methanogenesis 22
Application of Molecular Tools for Studying Microbial Community Diversity in Composts and Anaerobic Sludges 23
Carbon and Nutrient Balance 30
Conclusions 31
References 31
161216_1_En_2_Chapter_OnlinePDF 42
Chapter 2: Recent Developments in Bio-Energy Recovery Through Fermentation 42
Introduction 43
Bio-Ethanol Fermentation 44
Methane Fermentation 46
Other Fermentation Products 48
Optimum Fermentation Conditions, Bottlenecks, and Process Control in Microbial Methane Production 48
Deficiencies in Methane Fermentation 48
Ammonia Inhibition 49
Trace Element Supply 50
Fermentation Temperature 51
Retention Time 51
Benchmarks in Fermenter Performance 52
Monitoring and Control of Fermentations 53
Sustainability of Microbial Energy Transformations 54
Process Energy Demand and Greenhouse Gas Emission 54
Impacts of Byproducts on the Sustainability of Bio-Energies 55
Mass and Energy Balances 56
Potential of Microbial Energy Transformations 58
References 59
161216_1_En_3_Chapter_OnlinePDF 66
Chapter 3: Syntrophic Communities in Methane Formation from High Strength Wastewaters 66
Methane 67
Sources of Methane 67
The Dual Characteristic of Methane 68
Composition of High-Strength Wastewater 68
Methane-Producing Processes 69
Methane Reactors 69
Factors Influencing Methane Formation 71
Microbiology of Methane Formation from High-Strength Wastewater 72
Anaerobic Methanogenic Food Chainanaerobic food chain 72
Methanogenic Archaea in High Rate Anaerobic Digesters 73
Syntrophic Acetogenic Bacteria 75
Degradation of Propionate 76
Degradation of Butyrate and Long Chain Fatty Acids (LCFA) 77
Unusual Syntrophic Conversions 78
Perspectives 79
References 79
161216_1_En_4_Chapter_OnlinePDF 85
Chapter 4: Biogas Technology - Controlled Gas Flow for Enhanced Mixing, Heating, and Desulfurization 85
Historical Developments 86
Europe 86
Asia 86
Numerical Tools and Current Technologies 87
The BIO4GASBIO4GAS-Approach 89
The Development of an Idea 89
Mixing and Agitation 90
Heating 91
Hydrogen Sulfide OxidationHydrogen sulfide oxidation 93
Conclusions 95
References 95
161216_1_En_5_Chapter_OnlinePDF 98
Chapter 5: Vermicomposting: Earthworms Enhance the Work of Microbes 98
What Is Vermicomposting? 99
Earthworms 100
Vermicomposting Food Webfood web 101
How Vermicomposting Works 103
Stimulation and Acceleration of Microbial Decomposition by Earthworms during Vermicomposting 105
Effects of Earthworms on Microbial Communities during Vermicomposting 107
Effects of Earthworms on the Structure of Microbial Communities 108
Microbial BiomassMicrobial biomass 108
Bacterial and Fungal GrowthBacterial and fungal growth 109
Effects of Earthworms on the Activity of Microbial Communities 110
Effect of Earthworms on Total Coliforms during Vermicomposting 112
Effect of Earthworms on the Composition of Microbial Communities 112
Molecular ToolsMolecular tools Applied to Vermicomposting Studies 114
Conclusions 115
References 115
161216_1_En_6_Chapter_OnlinePDF 120
Chapter 6: Compost Microbial Activity Related to Compost Stability 120
Introduction 121
Important Factors During Composting 121
Microbial Activity During Composting 122
Compost Stability 125
Definition of Compost Stability 125
Compost Stability Evaluation 126
Physicochemical Parameters 126
Biological Parameters 128
Spectroscopic Methods 130
Stability and Agricultural Use of Composts 131
The Role of Compost in Preserving Soil Quality 131
Implications of the Use of Non-Stabilized Compost 132
Conclusion 133
References 133
161216_1_En_7_Chapter_OnlinePDF 140
Chapter 7: Utility of Molecular Tools in Monitoring Large Scale Composting 140
Introduction 141
Microbes in the Composting Processcomposting process 142
Molecular Methods to Study Microbial Diversity 142
Sequencingsequencing 145
Fingerprinting Methods 146
Macroarrays for Negative Selection 148
Diagnostic Microarrays 148
Quantitative Real-Time PCRQuantitative real-time PCR 150
Conclusions 151
References 152
161216_1_En_8_Chapter_OnlinePDF 157
Chapter 8: Production and Utilization of Suppressive Compost: Environmental, Food and Health Benefits 157
Introduction 158
The Composting Process 159
Controlling of Composting Process 160
Suppressivity of Compost 161
Mechanisms of Suppression 162
Biotic 162
Abiotic Action 164
Compost Tea 165
Tests to Evaluate Suppressivity of Compost 166
Use of Suppressive Compost 167
Pesticides in Agriculture 168
Concluding Remarks 169
References 170
161216_1_En_9_Chapter_OnlinePDF 175
Chapter 9: Sanitation by Composting 175
Introduction 176
Hygiene, an Important Factor in Composting 176
Barriers - Use of Product 178
Risk Factors 178
Incoming Material 178
Contamination of Composting Material 178
Organisms That Pose a Risk 179
Enteric Pathogens 179
Other Pathogenic Bacteria 180
Pathogenic VirusesPathogenic viruses 180
Pathogenic Parasitesparasites 180
InactivationInactivation Process 181
Heat Generation in the Compost 182
Distribution of Heat in the Compost 186
Function of Mixing 189
Calculation of Inactivation 190
Validation of the Hygiene Level in the Composting Process 192
References 193
161216_1_En_10_Chapter_OnlinePDF 196
Chapter 10: Microbial Antagonists in Animal Health Promotion and Plant Protection 196
Health Promoting Microbial Antagonists 197
The Competitive Power of Gut Bacteria 197
Finding an Alternative to Antibioticsantibiotic 199
Microbial Feed Additives: To Be Accepted 202
Microbial Plant Protectionplant protection Agents 203
Use of Antagonists in Plant Protection 204
Targets and Soldiers, Microbial Ecology in and on Plants 205
Out of Nature - Back to Nature: Screening for New Antagonistic Microorganisms 207
The Hard Way to Commercial Application 209
Perspectives: Acceptance in the Market, Competing Products 210
Conclusions 210
References 211
161216_1_En_11_Chapter_OnlinePDF 215
Chapter 11: Interactions Between Beneficial and Harmful Microorganisms: From the Composting Process to Compost Application 215
Introduction 216
Microorganisms at the Beginning of the Process 216
Succession of Microorganisms During the Process 217
Influence of Compost Management on Compost Microflora 218
Destruction of Harmful Microorganisms 220
Development of Beneficial Microflora During the Composting Process 222
Influence of Compost Amendments on the Soil Microflora 223
Conclusions 225
References 225
161216_1_En_12_Chapter_OnlinePDF 232
Chapter 12: Compost Microbial Populations and Interactions with Plants 232
Methods in Microbial Ecology 233
Microbial Community Profiling 235
Clone LibrariesClone libraries 236
DNA Microarrays 237
Compost Communities 237
Effect of Compost Application on Soil Microbial Community 239
Effect of Compost Application on Root and Rhizosphere Microbial Community 240
Conclusions 244
References 245
161216_1_En_13_Chapter_OnlinePDF 253
Chapter 13: Soil Degradation and Rehabilitation: Microorganisms and Functionality 253
Soil Quality 254
Soil Degradation in Semiarid Areas 255
Microbial Activity and Soil Degradation 256
Indices for Soil Quality Based on Microbial Parameters 257
Soil Rehabilitation by Applying Organic Amendments. A Case of Study in Semiarid Areas 259
Short-Term Effects of Organic Amendments in Semiarid Areas: Effects on Soil Microbial Community Size, Activity and Structure 259
Long-Term Effects of Organic Amendments in Semiarid Areas: Effects on Soil Microbial Community Activity and Structure 264
Metaproteomics of Organic Wastes 265
Conclusions and Final Remarks 266
References 266
161216_1_En_14_Chapter_OnlinePDF 271
Chapter 14: Do Composts Affect the Soil Microbial Community? 271
Introduction 272
Compost as Biological Fertiliser 272
The Use of Compost as Soil Amendment 273
How Compost Amendments Affect the Soil Microbiota 274
The Effect of Compost Amendments on Microbial Biomassmicrobial biomass 275
The Effect of Compost Amendments on Microbial Activity 276
The Effect of Compost Amendments on Microbial Community Structure and Diversity 277
Long-Term Effects of Different Compost Amendments on the Soil Microflora on an Agricultural Site - a Case Study 279
Experimental Design 281
Results and Discussion 281
Microbial Biomass and Activity 282
Soil Community Analysis Based on Microbial DNA 282
Outlook 284
Conclusions 285
References 286
161216_1_En_15_Chapter_OnlinePDF 292
Chapter 15: Production and Application of Bioorganic Fertilizers for Organic Farming Systems in Thailand: A Case Study 292
Introduction 293
Aim of Organic Farming 293
Organic Agriculture in Thailand 294
BOF Perspectives 295
Materials and Methods 295
Materials Selection for BOF Production 295
Characterization and Production of PGPR 296
Application of BOFs to Agricultural Cropping Systems 298
Application of BOFs to Vegetable Cropping Systems 298
Application of BOF to Rice Cultivation System 298
Quality Control of BOFs 299
Results of BOF Production and Application in Agricultural Cropping Systems 299
BOF Production and Its Characteristics 299
Application of BOF to Agricultural Cropping Systems 302
Quality Control of BOF 303
Discussion 304
Factors Involved with the Production of a Good Quality Organic Fertilizer 304
Impact of Organic organic fertilizerFertilizer Amendment on Soil Characterization 305
Effect of PGPR on Plant Growth Promotion 306
Conclusions: Emerging Research, Education and Extension Needed for BOF Application 308
References 309
161216_1_En_16_Chapter_OnlinePDF 312
Chapter 16: Challenges, Options and Future Research Needs 312
Global Challenges 313
Waste Management 313
Land Degradation and Soil Erosion 314
Population Growth, Food Demand and Diseases 315
Energy Demand 316
Climate Change 317
Contribution of the Microorganisms to Solve Current Global Challenges 318
References 320
161216_1_En_BookBackmatter_OnlinePDF 322
: Index 322

Erscheint lt. Verlag 7.12.2009
Zusatzinfo VIII, 329 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Mikrobiologie / Immunologie
Technik
Schlagworte Anerobic digestion • Antagonist • Biogas • Biological waste treatment • compost • Energy • Environment • Environmental Microbiology • microbe • Microbiology • Microorganism • Pesticide • Plant disease • Plant Protection • Recycling • wastewater
ISBN-10 3-642-04043-8 / 3642040438
ISBN-13 978-3-642-04043-6 / 9783642040436
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99