White Noise - Takeyuki Hida,  Hui-Hsiung Kuo, Jürgen Potthoff, L. Streit

White Noise

An Infinite Dimensional Calculus
Buch | Softcover
520 Seiten
2010
Springer (Verlag)
978-90-481-4260-6 (ISBN)
106,99 inkl. MwSt
This book treats the theory and applications of analysis and functional analysis in infinite dimensions based on white noise. Calculus, analysis, and functional analysis in infinite dimensions (or dimension-free formulations of these parts of classical mathematics) have a long history.
Many areas of applied mathematics call for an efficient calculus in infinite dimensions. This is most apparent in quantum physics and in all disciplines of science which describe natural phenomena by equations involving stochasticity. With this monograph we intend to provide a framework for analysis in infinite dimensions which is flexible enough to be applicable in many areas, and which on the other hand is intuitive and efficient. Whether or not we achieved our aim must be left to the judgment of the reader. This book treats the theory and applications of analysis and functional analysis in infinite dimensions based on white noise. By white noise we mean the generalized Gaussian process which is (informally) given by the time derivative of the Wiener process, i.e., by the velocity of Brownian mdtion. Therefore, in essence we present analysis on a Gaussian space, and applications to various areas of sClence. Calculus, analysis, and functional analysis in infinite dimensions (or dimension-free formulations of these parts of classical mathematics) have a long history. Early examples can be found in the works of Dirichlet, Euler, Hamilton, Lagrange, and Riemann on variational problems. At the beginning of this century, Frechet, Gateaux and Volterra made essential contributions to the calculus of functions over infinite dimensional spaces. The important and inspiring work of Wiener and Levy followed during the first half of this century. Moreover, the articles and books of Wiener and Levy had a view towards probability theory.

1. Gaussian Spaces.- 2. J and f Transformation and the Decomposition Theorem.- 3. Generalized Functionals.- 4. The Spaces (f) and (f)*.- 5. Calculus of Differential Operators.- 6. Laplacian Operators.- 7. The Spaces D and D*.- 8. Stochastic Integration.- 9. Fourier and Fourier-Mehler Transforms.- 10. Dirichlet Forms.- 11. Applications to Quantum Field Theory.- 12. Feynman Integrals.- Appendices.- A.1 Hermite Polynomials.- A.2 Fock Space.- A.3 Reproducing Kernel Hilbert Spaces.- Notations and Conventions.

Erscheint lt. Verlag 5.12.2010
Reihe/Serie Mathematics and Its Applications ; 253
Zusatzinfo XIV, 520 p.
Verlagsort Dordrecht
Sprache englisch
Maße 160 x 240 mm
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie Quantenphysik
Technik Elektrotechnik / Energietechnik
ISBN-10 90-481-4260-1 / 9048142601
ISBN-13 978-90-481-4260-6 / 9789048142606
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99