Für diesen Artikel ist leider kein Bild verfügbar.

Coherence-Targeted Text Summarization

(Autor)

Buch | Hardcover
2022 | 1st ed. 2021
Springer Verlag, Singapore
978-981-10-7943-6 (ISBN)
90,94 inkl. MwSt
This book introduces automatic text summarization approaches with improved coherence, presenting the modeling of three categories of coherence in detail - shallow content-driven coherence, deep content-driven coherence, and cognitive model-driven coherence. The computational modeling of such coherence, coupled with proposition-level extractive summarization, works successfully for narrative text. To model coherence of different kinds, novel techniques that are suitable for different genres of text, including newswires, social media messages, and fairy tales have been developed. The extensive experimental results on benchmark or self-compiled datasets have validated the efficacy and robustness of the techniques in various circumstances. Among its many contributions to summarization, this book shows that, contrary to common belief, coherence plays a pivotal role in automatic summarization, not an ancillary one. As one of the few large-scale studies of coherence in summarization, this book heralds a complete theory of coherence and more in-depth studies in coherence-targeted text summarization.

Renxian Zhang is an associate professor at Tongji University. He received a PhD in Computer Science from The Hong Kong Polytechnic University, and a second PhD in Linguistics from Fudan University, China. He also worked at Samsung Electronics and is the author of more than 20 journal and conference papers on natural language processing, data mining and related areas. With in-depth knowledge of and experience in text summarization accumulated over many years, in this book the author shares his unique insights into the coherence approaches to text summarization.

Erscheint lt. Verlag 6.2.2022
Zusatzinfo Approx. 270 p.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Grafik / Design Desktop Publishing / Typographie
Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Sozialwissenschaften Politik / Verwaltung Staat / Verwaltung
Schlagworte Artificial Intelligence • cognitive model • Coherence Modeling • Computational Linguistics • Content-driven Coherence • Natural Language Processing • Text Summarization
ISBN-10 981-10-7943-9 / 9811079439
ISBN-13 978-981-10-7943-6 / 9789811079436
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90