Science of Fullerenes and Carbon Nanotubes -  G. Dresselhaus,  M. S. Dresselhaus,  P. C. Eklund

Science of Fullerenes and Carbon Nanotubes (eBook)

Their Properties and Applications
eBook Download: PDF
1996 | 1. Auflage
965 Seiten
Elsevier Science (Verlag)
978-0-08-054077-1 (ISBN)
Systemvoraussetzungen
166,59 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The discovery of fullerenes (also known as buckyballs) has generated tremendous excitement and opened up a new field of carbon chemistry. As the first book available on this topic, this volume will be a landmark reference in the field. Because buckyballs are essentially closed hollow cages made up of carbon atoms, they can be manipulated in a variety of ways to yield never-before-seen materials. The balls can, for instance, be doped with atoms or pulled out into tubules and filled with lead to provide properties of high-temperature superconductivity. Researchers can now create their own buckyballs in a process that is almost as simple as making soot, making this research as inexpensive as it is exotic (which has doubtless contributed to its popularity). Researchers anticipate that fullerenes will offer boundless opportunities in the development of new products, drugs and materials.
Science of Fullerenes and Carbon Nanotubes introduces materials scientists, chemists, and solid state physicists to the field of fullerenes, and discusses the unique properties and applications. both current and future, of all classes of fullerenes.

Key Features
* First comprehensive resource on fullerenes and their applications
* Provides an introduction to the topic
* Presents an extensive discussion of current and future applications of Fullerenes
* Covers all classes of fullerenes
The discovery of fullerenes (also known as buckyballs) has generated tremendous excitement and opened up a new field of carbon chemistry. As the first book available on this topic, this volume will be a landmark reference in the field. Because buckyballs are essentially closed hollow cages made up of carbon atoms, they can be manipulated in a variety of ways to yield never-before-seen materials. The balls can, for instance, be doped with atoms or pulled out into tubules and filled with lead to provide properties of high-temperature superconductivity. Researchers can now create their own buckyballs in a process that is almost as simple as making soot, making this research as inexpensive as it is exotic (which has doubtless contributed to its popularity). Researchers anticipate that fullerenes will offer boundless opportunities in the development of new products, drugs and materials.Science of Fullerenes and Carbon Nanotubes introduces materials scientists, chemists, and solid state physicists to the field of fullerenes, and discusses the unique properties and applications. both current and future, of all classes of fullerenes.Key Features* First comprehensive resource on fullerenes and their applications* Provides an introduction to the topic* Presents an extensive discussion of current and future applications of Fullerenes* Covers all classes of fullerenes

Front Cover 1
Science of Fullerenes and Carbon Nanotubes 4
Copyright Page 5
Contents 6
Preface 18
Chapter 1. Historical Introduction 20
1.1. Early History 20
1.2. Astronomical Observations 22
1.3. Carbon Cluster Studies 22
1.4. Recent History 25
1.5. Architectural Analogs 26
1.6. Biological and Geological Examples 28
1.7. Road Map 31
References 32
Chapter 2. Carbon Materials 34
2.1. General Considerations 34
2.2. Graphite 37
2.3. Graphite Materials 39
2.4. Graphite Whiskers 40
2.5. Carbon Fibers 40
2.6. Glassy Carbon 43
2.7. Carbon Blacks 44
2.8. Carbon Coated Carbide Particles 48
2.9. Carbynes 50
2.10. Carbolites 51
2.11. Amorphous Carbon 52
2.12. Porous Carbons 53
2.13. Liquid Carbon 55
2.14. Graphite Intercalation Compounds 56
2.15. Diamond 58
2.16. Other Diamond Materials 60
2.17. Diamond-like and Cage Hydrocarbon Molecules 63
2.18. Synthesis of a Fully Unsaturated, All-Carbon Polymer 65
2.19. Metallo-Carbohedrenes (Met-Cars) 67
2.20. Carbon-Free Fullerenes 69
2.21. Metal-Coated Fullerenes 70
References 73
Chapter 3. Structure of Fullerenes 79
3.1. Structure of C60 and Euler's Theorem 79
3.2. Structure of C70 and Higher Fullerenes 85
3.3. The Projection Method for Specifying Fullerenes 93
References 96
Chapter 4. Symmetry Considerations of Fullerene Molecules 99
4.1. Icosahedral Symmetry Operations 99
4.2. Symmetry of Vibrational Modes 105
4.3. Symmetry for Electronic States 109
4.4. Going from Higher to Lower Symmetry 115
4.5. Symmetry Considerations for Isotopic Effects 123
References 128
Chapter 5. Synthesis, Extraction, and Purification of Fullerenes 129
5.1. Synthesis of Fullerenes 130
5.2. Fullerene Extraction 135
5.3. Fullerene Purification 140
5.4. Endohedral Fullerene Synthesis 150
5.5. Health and Safety Issues 157
References 157
Chapter 6. Fullerene Growth, Contraction, and Fragmentation 162
6.1. Fullerene Growth Models 162
6.2. Mass Spectrometry Characterization 171
6.3. Stability Issues 172
6.4. Fullerene Contraction and Fragmentation 175
6.5. Molecular Dynamics Models 185
References 187
Chapter 7. Crystalline Structure of Fullerene Solids 190
7.1. Crystalline C60 190
7.2. Crystalline C70 and Higher-Mass Fullerenes 216
7.3. Effect of Pressure on Crystal Structure 222
7.4. Effect of Temperature on Crystal Structure 227
7.5. Polymerized Fullerenes 228
References 236
Chapter 8. Classification and Structure of Doped Fullerenes 243
8.1. Classification of Types of Doping for Fullerenes 244
8.2. Endohedral Doping 247
8.3. Substitutional Doping 252
8.4. Exohedral Doping 253
8.5. Structure of Alkali Metal-Doped C60 Crystals 257
8.6. Structure of Alkaline Earth-Doped C60 272
8.7. Structure of Other Crystalline Fulleride Phases 275
8.8. The Doping of C70 and Higher-Mass Fullerenes 281
References 282
Chapter 9. Single-Crystal and Epitaxial Film Growth 290
9.1. Single-Crystal Growth 291
9.2. Thin-Film Synthesis 293
9.3. Synthesis of Doped C60 Crystals and Films 302
References 308
Chapter 10. Fullerene Chemistry and Electrochemistry 311
10.1. Practical Considerations in Fullerene Derivative Chemistry 312
10.2. General Characteristics of Fullerene Reactions 313
10.3. Reduction and Oxidation of C60 and C70 316
10.4. Hydrogenation, Alkylation, and Amination 323
10.5. Halogenation Reactions 326
10.6. Bridging Reactions 326
10.7. Cycloaddition Reactions 331
10.8. Substitution Reactions 333
10.9. Reactions with Free Radicals 334
10.10. Host–Guest Complexes and Polymerization 335
References 344
Chapter 11. Vibrational Modes 348
11.1. Overview of Mode Classifications 348
11.2. Experimental Techniques 350
11.3. C60 Intramolecular Modes 351
11.4. Intermolecular Modes 366
11.5. Experimental Results on C60 Solids and Films 374
11.6. Vibrational Modes in Doped Fullerene Solids 395
11.7. Vibrational Spectra for C70 and Higher Fullerenes 409
11.8. Vibrational Spectra for Phototransformed Fullerenes 416
11.9. Vibrational Spectra for C60 under Pressure 421
11.10. Vibrational Spectra of Other Fullerene-Related Materials 425
References 425
Chapter 12. Electronic Structure 432
12.1. Electronic Levels for Free C60 Molecules 433
12.2. Symmetry-Based Models 438
12.3. Many-Electron States for C60 and Other Icosahedral Fullerenes 440
12.4. Multiplet States for Free Ions Cn±60 442
12.5. Excitonic States for C60 448
12.6. Molecular States for Higher-Mass Fullerenes 451
12.7. Electronic Structure of Fullerenes in the Solid State 456
References 477
Chapter 13. Optical Properties 483
13.1. Optical Response of Isolated C60 Molecules 483
13.2. Optical Studies of C60 in Solution 495
13.3. Optical Properties of Solid C60 510
13.4. Optical Properties of Doped C60 530
13.5. Optical Properties of C60-Polymer Composites 552
13.6. Optical Properties of Higher-Mass Fullerenes 555
13.7. Dynamic and Nonlinear Optical Properties of Fullerenes 559
References 567
Chapter 14. Transport and Thermal Properties 575
14.1. Electrical Conductivity 576
14.2. Electron–Phonon Interaction 592
14.3. Hall Coefficient 599
14.4. Magnetoresistance 600
14.5. Electronic Density of States 602
14.6. Pressure Effects 605
14.7. Photoconductivity 606
14.8. Specific Heat 613
14.9. Scanning Calorimetry Studies 619
14.10. Temperature Coefficient of Thermal Expansion 620
14.11. Thermal Conductivity 621
14.12. Thermopower 622
14.13. Internal Friction 627
References 628
Chapter 15. Superconductivity 635
15.1. Experimental Observations of Superconductivity 635
15.2. Critical Temperature 643
15.3. Magnetic Field Effects 645
15.4. Temperature Dependence of the Superconducting Energy Gap 652
15.5. Isotope Effect 657
15.6. Pressure-Dependent Effects 660
15.7. Mechanism for Superconductivity 662
References 667
Chapter 16. Magnetic Resonance Studies 673
16.1. Nuclear Magnetic Resonance 673
16.2. Electron Paramagnetic Resonance 688
16.3. Muon Spin Resonance (mSR) 702
References 703
Chapter 17. Surface Science Studies Related to Fullerenes 708
17.1. Photoemission and Inverse Photoemission 709
17.2. Electron Energy Loss Spectroscopy 716
17.3. Auger Electron Spectroscopy 727
17.4. Scanning Tunneling Microscopy 731
17.5. Temperature-Programmed Desorption 734
17.6. Work Function 736
17.7. Surface-Enhanced Raman Scattering 736
17.8. Photoionization 738
17.9. Fullerene Interface Interactions with Substrates 738
References 752
Chapter 18. Magnetic Properties 758
18.1. Diamagnetic Behavior 759
18.2. Magnetic Endohedral and Exohedral Dopants 761
18.3. Magnetic Properties of Fullerene Ions 763
18.4. Pauli Paramagnetism in Doped Fullerenes 764
18.5. p-level Magnetism 766
References 766
Chapter 19. C60-Related Tubules and Spherules 775
19.1. Relation between Tubules and Fullerenes 776
19.2. Experimental Observation of Carbon Nanotubes 780
19.3. Growth Mechanism 804
19.4. Symmetry Properties of Carbon Nanotubes 810
19.5. Electronic Structure: Theoretical Predictions 821
19.6. Electronic Structure: Experimental Results 844
19.7. Phonon Modes in Carbon Nanotubes 858
19.8. Elastic Properties 873
19.9. Filled Nanotubes 877
19.10. Onion-Like Graphitic Particles 879
19.11. Possible Superconductivity in C60-Related Tubules 882
References 883
Chapter 20. Applications of Carbon Nanostructures 889
20.1. Optical Applications 889
20.2. Electronics Applications 899
20.3. Materials Applications 912
20.4. Electrochemical Applications of C60 917
20.5. Other Applications 920
20.6. Commercialization and Patents 927
References 930
Index 938

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95