Applied Machine Learning for Health and Fitness - Kevin Ashley

Applied Machine Learning for Health and Fitness (eBook)

A Practical Guide to Machine Learning with Deep Vision, Sensors and IoT

(Autor)

eBook Download: PDF
2020 | 1st ed.
XVI, 259 Seiten
Apress (Verlag)
978-1-4842-5772-2 (ISBN)
Systemvoraussetzungen
66,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Explore the world of using machine learning methods with deep computer vision, sensors and data in sports, health and fitness and other industries. Accompanied by practical step-by-step Python code samples and Jupyter notebooks, this comprehensive guide acts as a reference for a data scientist, machine learning practitioner or anyone interested in AI applications. These ML models and methods can be used to create solutions for AI enhanced coaching, judging, athletic performance improvement, movement analysis, simulations, in motion capture, gaming, cinema production and more.

Packed with fun, practical applications for sports, machine learning models used in the book include supervised, unsupervised and cutting-edge reinforcement learning methods and models with popular tools like PyTorch, Tensorflow, Keras, OpenAI Gym and OpenCV. Author Kevin Ashley-who happens to be both a machine learning expert and a professional ski instructor-has written an insightful book that takes you on a journey of modern sport science and AI. 

Filled with thorough, engaging illustrations and dozens of real-life examples, this book is your next step to understanding the implementation of AI within the sports world and beyond. Whether you are a data scientist, a coach, an athlete, or simply a personal fitness enthusiast excited about connecting your findings with AI methods, the author's practical expertise in both tech and sports is an undeniable asset for your learning process. Today's data scientists are the future of athletics, and Applied Machine Learning for Health and Fitness hands you the knowledge you need to stay relevant in this rapidly growing space.

What You'll Learn

  • Use multiple data science tools and frameworks
  • Apply deep computer vision and other machine learning methods for classification, semantic segmentation, and action recognition
  • Build and train neural networks, reinforcement learning models and more
  • Analyze multiple sporting activities with deep learning
  • Use datasets available today for model training
  • Use machine learning in the cloud to train and deploy models
  • Apply best practices in machine learning and data science

  • Who This Book Is For

    Primarily aimed at data scientists, coaches, sports enthusiasts and athletes interested in connecting sports with technology and AI methods. 


    Kevin Ashley is a Microsoft architect, IoT expert, and professional ski instructor. He is an author and developer of top sports and fitness apps and platforms such as Active Fitness and Winter Sports with a multi-million user audience. Kevin often works with sports scientists, Olympic athletes, coaches and teams to advance technology use in sports. 
    Explore the world of using machine learning methods with deep computer vision, sensors and data in sports, health and fitness and other industries. Accompanied by practical step-by-step Python code samples and Jupyter notebooks, this comprehensive guide acts as a reference for a data scientist, machine learning practitioner or anyone interested in AI applications. These ML models and methods can be used to create solutions for AI enhanced coaching, judging, athletic performance improvement, movement analysis, simulations, in motion capture, gaming, cinema production and more.Packed with fun, practical applications for sports, machine learning models used in the book include supervised, unsupervised and cutting-edge reinforcement learning methods and models with popular tools like PyTorch, Tensorflow, Keras, OpenAI Gym and OpenCV. Author Kevin Ashley-who happens to be both a machine learning expert and a professional ski instructor-has written an insightful book that takes you on a journey of modern sport science and AI.  Filled with thorough, engaging illustrations and dozens of real-life examples, this book is your next step to understanding the implementation of AI within the sports world and beyond. Whether you are a data scientist, a coach, an athlete, or simply a personal fitness enthusiast excited about connecting your findings with AI methods, the author's practical expertise in both tech and sports is an undeniable asset for your learning process. Today's data scientists are the future of athletics, and Applied Machine Learning for Health and Fitness hands you the knowledge you need to stay relevant in this rapidly growing space.What You'll LearnUse multiple data science tools and frameworksApply deep computer vision and other machine learning methods for classification, semantic segmentation, and action recognitionBuild and train neural networks, reinforcement learning models andmoreAnalyze multiple sporting activities with deep learningUse datasets available today for model trainingUse machine learning in the cloud to train and deploy modelsApply best practices in machine learning and data scienceWho This Book Is ForPrimarily aimed at data scientists, coaches, sports enthusiasts and athletes interested in connecting sports with technology and AI methods. 
    Erscheint lt. Verlag 24.8.2020
    Zusatzinfo XVI, 259 p. 170 illus., 75 illus. in color.
    Sprache englisch
    Themenwelt Sachbuch/Ratgeber Sport
    Mathematik / Informatik Informatik Netzwerke
    Informatik Theorie / Studium Künstliche Intelligenz / Robotik
    Informatik Weitere Themen Hardware
    Schlagworte AI and fitness • AI and sports • AI in sport • Arduino • Artificial Intelligence • Data Scientists • IOT • machine learning • Python • R Programming • sensors • Sports • UNITY • Virtual Reality
    ISBN-10 1-4842-5772-3 / 1484257723
    ISBN-13 978-1-4842-5772-2 / 9781484257722
    Haben Sie eine Frage zum Produkt?
    PDFPDF (Wasserzeichen)
    Größe: 11,6 MB

    DRM: Digitales Wasserzeichen
    Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

    Dateiformat: PDF (Portable Document Format)
    Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

    Systemvoraussetzungen:
    PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
    eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
    Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

    Buying eBooks from abroad
    For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

    Mehr entdecken
    aus dem Bereich
    der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

    von Thomas R. Köhler; Julia Finkeissen

    eBook Download (2024)
    Campus Verlag
    38,99
    Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

    von Rainer Hattenhauer

    eBook Download (2023)
    Rheinwerk Computing (Verlag)
    17,43