A History of Aeronautics (eBook)

eBook Download: EPUB
2018
351 Seiten
Seltzer Books (Verlag)
978-1-4554-2108-4 (ISBN)

Lese- und Medienproben

A History of Aeronautics - E. Charles Vivian
0,84 € inkl. MwSt
Systemvoraussetzungen
0,91 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
First published in 1920.According to the Foreword: 'Although successful heavier-than-air flight is less than two decades old, and successful dirigible propulsion antedates it by a very short period, the mass of experiment and accomplishment renders any one-volume history of the subject a matter of
selection.In addition to the restrictions imposed by space limits, the material for compilation is fragmentary, and, in many cases, scattered through periodical and other publications.Hitherto, there has been no attempt at furnishing a detailed account of how the aeroplane and the dirigible of to-day came to being, but each author who has treated the subject has devoted his attention to some special phase or section. The principal exception to this rule--Hildebrandt--wrote in 1906, and a good many of his statements are inaccurate, especially with regard to heavier-than-air experiment.'
First published in 1920. According to the Foreword: "e;Although successful heavier-than-air flight is less than two decades old, and successful dirigible propulsion antedates it by a very short period, the mass of experiment and accomplishment renders any one-volume history of the subject a matter ofselection. In addition to the restrictions imposed by space limits, the material for compilation is fragmentary, and, in many cases, scattered through periodical and other publications. Hitherto, there has been no attempt at furnishing a detailed account of how the aeroplane and the dirigible of to-day came to being, but each author who has treated the subject has devoted his attention to some special phase or section. The principal exception to this rule--Hildebrandt--wrote in 1906, and a good many of his statements are inaccurate, especially with regard to heavier-than-air experiment."e;

X. SAMUEL PIERPOINT LANGLEY


 

Langley was an old man when he began the study of aeronautics, or, as he himself might have expressed it, the study of aerodromics, since he persisted in calling the series of machines he built 'Aerodromes,' a word now used only to denote areas devoted to use as landing spaces for flying machines; the Wright Brothers, on the other hand, had the great gift of youth to aid them in their work.  Even so it was a great race between Langley, aided by Charles Manly, and Wilbur and Orville Wright, and only the persistent ill-luck which dogged Langley from the start to the finish of his experiments gave victory to his rivals.  It has been proved conclusively in these later years of accomplished flight that the machine which Langley launched on the Potomac River in October of 1903 was fully capable of sustained flight, and only the accidents incurred in launching prevented its pilot from being the first man to navigate the air successfully in a power-driven machine.

 

The best account of Langley's work is that diffused throughout a weighty tome issued by the Smithsonian Institution, entitled the Langley Memoir on Mechanical Flight, of which about one-third was written by Langley himself, the remainder being compiled by Charles M. Manly, the engineer responsible for the construction of the first radial aero-engine, and chief assistant to Langley in his experiments.  To give a twentieth of the contents of this volume in the present short account of the development of mechanical flight would far exceed the amount of space that can be devoted even to so eminent a man in aeronautics as S. P. Langley, who, apart from his achievement in the construction of a power-driven aeroplane really capable of flight, was a scientist of no mean order, and who brought to the study of aeronautics the skill of the trained investigator allied to the inventive resource of the genius.

 

That genius exemplified the antique saw regarding the infinite capacity for taking pains, for the Langley Memoir shows that as early as 1891 Langley had completed a set of experiments, lasting through years, which proved it possible to construct machines giving such a velocity to inclined surfaces that bodies indefinitely heavier than air could be sustained upon it and propelled through it at high speed.  For full account (very full) of these experiments, and of a later series leading up to the construction of a series of 'model aerodromes' capable of flight under power, it is necessary to turn to the bulky memoir of Smithsonian origin.

 

The account of these experiments as given by Langley himself reveals the humility of the true investigator. Concerning them, Langley remarks that, 'Everything here has been done with a view to putting a trial aerodrome successfully in flight within a few years, and thus giving an early demonstration of the only kind which is conclusive in the eyes of the scientific man, as well as of the general public--a demonstration that mechanical flight is possible--by actually flying.  All that has been done has been with an eye principally to this immediate result, and all the experiments given in this book are to be considered only as approximations to exact truth.  All were made with a view, not to some remote future, but to an arrival within the compass of a few years at some result in actual flight that could not be gainsaid or mistaken.'

 

With a series of over thirty rubber-driven models Langley demonstrated the practicability of opposing curved surfaces to the resistance of the air in such a way as to achieve flight, in the early nineties of last century; he then set about finding the motive power which should permit of the construction of larger machines, up to man-carrying size.  The internal combustion engine was then an unknown quantity, and he had to turn to steam, finally, as the propulsive energy for his power plant.  The chief problem which faced him was that of the relative weight and power of his engine; he harked back to the Stringfellow engine of 1868, which in 1889 came into the possession of the Smithsonian Institution as a historical curiosity.  Rightly or wrongly Langley concluded on examination that this engine never had developed and never could develop more than a tenth of the power attributed to it; consequently he abandoned the idea of copying the Stringfellow design and set about making his own engine.

 

How he overcame the various difficulties that faced him and constructed a steam-engine capable of the task allotted to it forms a story in itself, too long for recital here.  His first power-driven aerodrome of model size was begun in November of 1891, the scale of construction being decided with the idea that it should be large enough to carry an automatic steering apparatus which would render the machine capable of maintaining a long and steady flight.  The actual weight of the first model far exceeded the theoretical estimate, and Langley found that a constant increase of weight under the exigencies of construction was a feature which could never be altogether eliminated.  The machine was made principally of steel, the sustaining surfaces being composed of silk stretched from a steel tube with wooden attachments.  The first engines were the oscillating type, but were found deficient in power.  This led to the construction of single-acting inverted oscillating engines with high and low pressure cylinders, and with admission and exhaust ports to avoid the complication and weight of eccentric and valves.  Boiler and furnace had to be specially designed; an analysis of sustaining surfaces and the settlement of equilibrium while in flight had to be overcome, and then it was possible to set about the construction of the series of model aerodromes and make test of their 'lift.'

 

By the time Langley had advanced sufficiently far to consider it possible to conduct experiments in the open air, even with these models, he had got to his fifth aerodrome, and to the year 1894.  Certain tests resulted in failure, which in turn resulted in further modifications of design, mainly of the engines.  By February of 1895 Langley reported that under favourable conditions a lift of nearly sixty per cent of the flying weight was secured, but although this was much more than was required for flight, it was decided to postpone trials until two machines were ready for the test.  May, 1896, came before actual trials were made, when one machine proved successful and another, a later design, failed.  The difficulty with these models was that of securing a correct angle for launching; Langley records how, on launching one machine, it rose so rapidly that it attained an angle of sixty degrees and then did a tail slide into the water with its engines working at full speed, after advancing nearly forty feet and remaining in the air for about three seconds.  Here, Langley found that he had to obtain greater rigidity in his wings, owing to the distortion of the form of wing under pressure, and how he overcame this difficulty constitutes yet another story too long for the telling here.

 

Field trials were first attempted in 1893, and Langley blamed his launching apparatus for their total failure. There was a brief, but at the same time practical, success in model flight in 1894, extending to between six and seven seconds, but this only proved the need for strengthening of the wing.  In 1895 there was practically no advance toward the solution of the problem, but the flights of May 6th and November 28th, 1896, were notably successful.  A diagram given in Langley's memoir shows the track covered by the aerodrome on these two flights; in the first of them the machine made three complete circles, covering a distance of 3,200 feet; in the second, that of November 28th, the distance covered was 4,200 feet, or about three-quarters of a mile, at a speed of about thirty miles an hour.

 

These achievements meant a good deal; they proved mechanically propelled flight possible.  The difference between them and such experiments as were conducted by Clement Ader, Maxim, and others, lay principally in the fact that these latter either did or did not succeed in rising into the air once, and then, either willingly or by compulsion, gave up the quest, while Langley repeated his experiments and thus attained to actual proof of the possibilities of flight.  Like these others, however, he decided in 1896 that he would not undertake the construction of a large man-carrying machine.  In addition to a multitude of actual duties, which left him practically no time available for original research, he had as an adverse factor fully ten years of disheartening difficulties in connection with his model machines.  It was President McKinley who, by requesting Langley to undertake the construction and test of a machine which might finally lead to the development of a flying machine capable of being used in warfare, egged him on to his final experiment.  Langley's acceptance of the offer to construct such a machine is contained in a letter addressed from the Smithsonian Institution on December 12th, 1898, to the Board of Ordnance and Fortification of the United States War Department; this letter is of such interest as to render it worthy of reproduction:--

 

'Gentlemen,--In response to your invitation I repeat what I had the honour to say to the Board--that I am willing, with the consent of the Regents of this Institution, to undertake for the Government the further investigation of the subject of the construction of a flying machine on a scale capable of carrying a man, the investigation to include the...

Erscheint lt. Verlag 1.3.2018
Sprache englisch
Themenwelt Natur / Technik Fahrzeuge / Flugzeuge / Schiffe Luftfahrt / Raumfahrt
Technik Fahrzeugbau / Schiffbau
Technik Luft- / Raumfahrttechnik
ISBN-10 1-4554-2108-1 / 1455421081
ISBN-13 978-1-4554-2108-4 / 9781455421084
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 705 KB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich