Julia for Data Science (eBook)

(Autor)

eBook Download: EPUB
2016
346 Seiten
Packt Publishing (Verlag)
978-1-78355-386-0 (ISBN)

Lese- und Medienproben

Julia for Data Science - Anshul Joshi
Systemvoraussetzungen
41,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Explore the world of data science from scratch with Julia by your side

About This Book

  • An in-depth exploration of Julia's growing ecosystem of packages
  • Work with the most powerful open-source libraries for deep learning, data wrangling, and data visualization
  • Learn about deep learning using Mocha.jl and give speed and high performance to data analysis on large data sets

Who This Book Is For

This book is aimed at data analysts and aspiring data scientists who have a basic knowledge of Julia or are completely new to it. The book also appeals to those competent in R and Python and wish to adopt Julia to improve their skills set in Data Science. It would be beneficial if the readers have a good background in statistics and computational mathematics.

What You Will Learn

  • Apply statistical models in Julia for data-driven decisions
  • Understanding the process of data munging and data preparation using Julia
  • Explore techniques to visualize data using Julia and D3 based packages
  • Using Julia to create self-learning systems using cutting edge machine learning algorithms
  • Create supervised and unsupervised machine learning systems using Julia. Also, explore ensemble models
  • Build a recommendation engine in Julia
  • Dive into Julia's deep learning framework and build a system using Mocha.jl

In Detail

Julia is a fast and high performing language that's perfectly suited to data science with a mature package ecosystem and is now feature complete. It is a good tool for a data science practitioner. There was a famous post at Harvard Business Review that Data Scientist is the sexiest job of the 21st century. (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century).

This book will help you get familiarised with Julia's rich ecosystem, which is continuously evolving, allowing you to stay on top of your game.

This book contains the essentials of data science and gives a high-level overview of advanced statistics and techniques. You will dive in and will work on generating insights by performing inferential statistics, and will reveal hidden patterns and trends using data mining. This has the practical coverage of statistics and machine learning. You will develop knowledge to build statistical models and machine learning systems in Julia with attractive visualizations.

You will then delve into the world of Deep learning in Julia and will understand the framework, Mocha.jl with which you can create artificial neural networks and implement deep learning.

This book addresses the challenges of real-world data science problems, including data cleaning, data preparation, inferential statistics, statistical modeling, building high-performance machine learning systems and creating effective visualizations using Julia.

Style and approach

This practical and easy-to-follow yet comprehensive guide will get you learning about Julia with respect to data science. Each topic is explained thoroughly and placed in context. For the more inquisitive, we dive deeper into the language and its use case. This is the one true guide to working with Julia in data science.


Explore the world of data science from scratch with Julia by your sideAbout This BookAn in-depth exploration of Julia's growing ecosystem of packagesWork with the most powerful open-source libraries for deep learning, data wrangling, and data visualizationLearn about deep learning using Mocha.jl and give speed and high performance to data analysis on large data setsWho This Book Is ForThis book is aimed at data analysts and aspiring data scientists who have a basic knowledge of Julia or are completely new to it. The book also appeals to those competent in R and Python and wish to adopt Julia to improve their skills set in Data Science. It would be beneficial if the readers have a good background in statistics and computational mathematics.What You Will LearnApply statistical models in Julia for data-driven decisionsUnderstanding the process of data munging and data preparation using JuliaExplore techniques to visualize data using Julia and D3 based packagesUsing Julia to create self-learning systems using cutting edge machine learning algorithmsCreate supervised and unsupervised machine learning systems using Julia. Also, explore ensemble modelsBuild a recommendation engine in JuliaDive into Julia's deep learning framework and build a system using Mocha.jlIn DetailJulia is a fast and high performing language that's perfectly suited to data science with a mature package ecosystem and is now feature complete. It is a good tool for a data science practitioner. There was a famous post at Harvard Business Review that Data Scientist is the sexiest job of the 21st century. (https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century).This book will help you get familiarised with Julia's rich ecosystem, which is continuously evolving, allowing you to stay on top of your game.This book contains the essentials of data science and gives a high-level overview of advanced statistics and techniques. You will dive in and will work on generating insights by performing inferential statistics, and will reveal hidden patterns and trends using data mining. This has the practical coverage of statistics and machine learning. You will develop knowledge to build statistical models and machine learning systems in Julia with attractive visualizations.You will then delve into the world of Deep learning in Julia and will understand the framework, Mocha.jl with which you can create artificial neural networks and implement deep learning.This book addresses the challenges of real-world data science problems, including data cleaning, data preparation, inferential statistics, statistical modeling, building high-performance machine learning systems and creating effective visualizations using Julia.Style and approachThis practical and easy-to-follow yet comprehensive guide will get you learning about Julia with respect to data science. Each topic is explained thoroughly and placed in context. For the more inquisitive, we dive deeper into the language and its use case. This is the one true guide to working with Julia in data science.
Erscheint lt. Verlag 30.9.2016
Sprache englisch
Themenwelt Sachbuch/Ratgeber Freizeit / Hobby Sammeln / Sammlerkataloge
ISBN-10 1-78355-386-3 / 1783553863
ISBN-13 978-1-78355-386-0 / 9781783553860
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 17,5 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
The Process of Leading Organizational Change

von Donald L. L. Anderson

eBook Download (2023)
Sage Publications (Verlag)
104,99
Interpreter of Constitutionalism in Japan

von Frank O. Miller

eBook Download (2023)
University of California Press (Verlag)
49,99