Introduction to Involutive Structures (eBook)
Cambridge University Press (Verlag)
978-0-511-38031-0 (ISBN)
Detailing the main methods in the theory of involutive systems of complex vector fields this book examines the major results from the last twenty five years in the subject. One of the key tools of the subject - the Baouendi-Treves approximation theorem - is proved for many function spaces. This in turn is applied to questions in partial differential equations and several complex variables. Many basic problems such as regularity, unique continuation and boundary behaviour of the solutions are explored. The local solvability of systems of partial differential equations is studied in some detail. The book provides a solid background for others new to the field and also contains a treatment of many recent results which will be of interest to researchers in the subject.
Detailing the main methods in the theory of involutive systems of complex vector fields this book examines the major results from the last twenty five years in the subject. One of the key tools of the subject - the Baouendi-Treves approximation theorem - is proved for many function spaces. This in turn is applied to questions in partial differential equations and several complex variables. Many basic problems such as regularity, unique continuation and boundary behaviour of the solutions are explored. The local solvability of systems of partial differential equations is studied in some detail. The book provides a solid background for others new to the field and also contains a treatment of many recent results which will be of interest to researchers in the subject.
Erscheint lt. Verlag | 2.4.2008 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Technik | |
ISBN-10 | 0-511-38031-3 / 0511380313 |
ISBN-13 | 978-0-511-38031-0 / 9780511380310 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich