Exploratory Galois Theory -  John Swallow

Exploratory Galois Theory (eBook)

(Autor)

eBook Download: PDF
2004 | 1. Auflage
Cambridge University Press (Verlag)
978-0-511-22762-2 (ISBN)
Systemvoraussetzungen
51,20 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. The author organizes the theory around natural questions about algebraic numbers, and exercises with hints and proof sketches encourage students' participation in the development. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. Exploratory Galois Theory includes classical applications, from ruler-and-compass constructions to solvability by radicals, and also outlines the generalization from subfields of the complex numbers to arbitrary fields. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.


Combining a concrete perspective with an exploration-based approach, Exploratory Galois Theory develops Galois theory at an entirely undergraduate level. The text grounds the presentation in the concept of algebraic numbers with complex approximations and assumes of its readers only a first course in abstract algebra. The author organizes the theory around natural questions about algebraic numbers, and exercises with hints and proof sketches encourage students' participation in the development. For readers with Maple or Mathematica, the text introduces tools for hands-on experimentation with finite extensions of the rational numbers, enabling a familiarity never before available to students of the subject. Exploratory Galois Theory includes classical applications, from ruler-and-compass constructions to solvability by radicals, and also outlines the generalization from subfields of the complex numbers to arbitrary fields. The text is appropriate for traditional lecture courses, for seminars, or for self-paced independent study by undergraduates and graduate students.
Erscheint lt. Verlag 6.11.2006
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Technik
ISBN-10 0-511-22762-0 / 0511227620
ISBN-13 978-0-511-22762-2 / 9780511227622
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich