Emission Tomography -  John N. Aarsvold,  Miles N. Wernick

Emission Tomography (eBook)

The Fundamentals of PET and SPECT
eBook Download: PDF
2004 | 1. Auflage
596 Seiten
Elsevier Science (Verlag)
978-0-08-052187-9 (ISBN)
Systemvoraussetzungen
121,76 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.

*Contains thorough tutorial treatments, coupled with coverage of advanced topics
*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors
*Include color artwork
PET and SPECT are two of today's most important medical-imaging methods, providing images that reveal subtle information about physiological processes in humans and animals. Emission Tomography: The Fundamentals of PET and SPECT explains the physics and engineering principles of these important functional-imaging methods. The technology of emission tomography is covered in detail, including historical origins, scientific and mathematical foundations, imaging systems and their components, image reconstruction and analysis, simulation techniques, and clinical and laboratory applications. The book describes the state of the art of emission tomography, including all facets of conventional SPECT and PET, as well as contemporary topics such as iterative image reconstruction, small-animal imaging, and PET/CT systems. This book is intended as a textbook and reference resource for graduate students, researchers, medical physicists, biomedical engineers, and professional engineers and physicists in the medical-imaging industry. Thorough tutorials of fundamental and advanced topics are presented by dozens of the leading researchers in PET and SPECT. SPECT has long been a mainstay of clinical imaging, and PET is now one of the world's fastest growing medical imaging techniques, owing to its dramatic contributions to cancer imaging and other applications. Emission Tomography: The Fundamentals of PET and SPECT is an essential resource for understanding the technology of SPECT and PET, the most widely used forms of molecular imaging.*Contains thorough tutorial treatments, coupled with coverage of advanced topics*Three of the four holders of the prestigious Institute of Electrical and Electronics Engineers Medical Imaging Scientist Award are chapter contributors*Include color artwork

Front Cover 1
EMISSION TOMOGRAPHY: The Fundamentals of PET and SPECT 2
Copyright Page 5
Contents 6
Contributors 14
Foreword 16
Preface 18
Acknowledgements 20
Chapter 1. Imaging Science Bringing the Invisible to Light 22
I. Preamble 22
II. Introduction 22
III. Imaging Science 24
IV. Fundamental and Generic Issues of Imaging Science 26
V. Methodology and Epistemology 29
VI. A View of the Future 29
Chapter 2. Introduction to Emission Tomography 32
I. What is Emission Tomography? 32
II. The Making of an Emission Tomography Image 34
III. Types of Data Acquisition: Static, Dynamic, Gated, and List Mode 41
IV. Cross-Sectional Images 42
V. Radiopharmaceuticals and Their Applications 42
VI. Developments in Emission Tomography 43
Chapter 3. Evolution of Clinical Emission Tomography 46
I. Introduction 46
II. The Beginnings of Nuclear Medicine 46
III. Early Imaging Devices 47
IV. Evolution of Emission Tomography and Initial Applications 52
V. Clinical Applications 59
VI. Summary 70
Chapter 4. Basic Physics of Radioisotope Imaging 74
I. Where Do the Nuclear Emissions Used in Imaging Come From? 74
II. Relevant Modes of Nuclear Decay for Medical Radionuclide Imaging 78
III. Production of Radionuclides for Imaging 81
IV. Interactions of Nuclear Emissions in Matter 85
V. Exploiting Radiation Interactions in Matter for Emission Imaging 96
VI. Physical Factors That Determine the Fundamental Spatial Resolution Limit in Nuclear Emission Imaging 104
Chapter 5. Radiopharmaceuticals for Imaging the Brain 110
I. Introduction 110
II. Biochemical Processes in the Brain 111
III. New Radiopharmaceutical Development 112
IV. Neuroscience Studies 113
V. Applications of Imaging Studies: Dopamine System 117
VI. Oncology Studies 119
VII. Genomic Studies 119
VIII. Summary 120
Chapter 6. Basics of Imaging Theory and Statistics 124
I. Introduction 124
II. Linear Systems 125
III. Discrete Sampling 128
IV. Noise and Signal 135
V. Filtering 138
VI. Smoothing 140
VII. Estimation 142
VIII. Objective Assessment of Image Quality 144
Chapter 7. Single-Photon Emission Computed Tomography 148
I. Planar Single-Photon Emission Imaging 148
II. Conventional Gamma Cameras 151
III. Tomography 157
IV. Single-Photon Emission Computed Tomography Systems 161
V. Tomographic Single-Photon Emission Imaging 166
VI. Other Detectors and Systems 168
VII. Summary 171
Chapter 8. Collimator Design for Nuclear Medicine 174
I. Basic Principles of Collimator Design 174
II. Description of the Imaging System and Collimator Geometry 175
III. Description of Collimator Imaging Properties 177
IV. Septal Penetration 181
V. Optimal Design of Parallel-Hole Collimators 182
VI. Secondary Constraints 185
VII. Summary 189
Chapter 9. Annular Single-Crystal SPECT Systems 190
I. Overview: Annular Single-Photon Emission Computed Tomography Systems 190
II. Principles and Design of CeraSPECT 191
III. Annular SensOgrade Collimators 192
IV. Modification of Light Optics in a Scintillation Camera 193
V. NeurOtome, A Bridge between Single-Photon Emission Computed Tomography and Positron Emission Tomography 194
VI. MammOspect, an Annular Breast Single-Photon Emission Computed Tomography Camera 196
VII. Small Animal Single-Photon Emission Computed Tomography Using an Annular Crystal 198
VIII. Discussion 199
Chapter 10. PET Systems 200
I. Basic Positron Emission Tomography Principles 200
II. Detector Designs 203
III. Tomography System Geometry 205
IV. Positron Emission Tomography Scintillators 207
V. Positron Emission Tomography System Electronics 208
VI. Attenuation Correction 209
VII. Scatter Correction 211
VIII. Noise Equivalent Count Rate 212
IX. Future Trends 213
Chapter 11. PET/CT Systems 216
I. Introduction 216
II. Motivation 218
III. Initial Development 218
IV. Design 219
V. Protocols 223
VI. Image Registration and Fusion 227
VII. Attenuation Correction 227
VIII. Dosimetry 230
IX. The Future 231
Chapter 12. Small Animal PET Systems 234
I. Introduction 234
II. Challenges in Small Animal PET 236
III. Early Development of Animal PET Scanners 238
IV. New Generation Small Animal PET Scanners 239
V. Applications of Small Animal PET 242
VI. Future Opportunities and Challenges 244
VII. Summary 246
Chapter 13. Scintillators 250
I. Introduction 250
II. Gamma-Ray Interactions in Scintillation Crystals 250
III. The Characteristics and Physical Properties of Scintillators 254
IV. Scintillation Detectors: Design and Fabrication 263
V. Measurements with Scintillators 267
VI. Summary and Comments 274
Chapter 14. Photodetectors 276
I. Introduction 276
II. Photomultiplier Tubes 277
III. Semiconductor Diode Detectors 281
IV. PIN Diodes 282
V. Avalanche Photodiodes 283
VI. Comparison of PMT and APD Properties 285
VII. Drift Diodes 286
VIII. Direct Detection of Gamma Rays: CdTe and CdZnTe Detectors 287
Chapter 15. CdTe and CdZnTe Semiconductor Detectors for Nuclear Medicine Imaging 290
I. Introduction 291
II. Energy Spectrum Performance 295
III. Imaging Performance 298
IV. Nuclear Medicine Applications 302
V. Conclusion 305
Chapter 16. Application-Specific Small Field-of-View Nuclear Emission Imagers in Medicine 314
I. Overview of Application-Specific Small Field-of-View Imagers 314
II. Scintillation Detector Designs of Small Field-of-View Imagers 321
III. Semiconductor Detector Designs of Small Field-of- View Imagers 336
IV. Review of Current Designs and Applications for Small Field-of-View Imagers 338
Chapter 17. Intraoperative Probes and Imaging Probes 356
I. Introduction 356
II. Early Intraoperative Probes 357
III. Clinical Applications 362
IV. The Future.Imaging Probes? 365
V. Discussion 374
VI. Conclusion 374
Chapter 18. Noble Gas Detectors 380
I. Why Noble Gas Detectors are Interesting for Medical Gamma-Ray Imaging 380
II. Basic Processes of Energy Dissipation and Generation of Light Signals 383
III. Earlier Developments of Gas Detectors for Medical Applications 387
IV. Luminescence Detectors 388
V. Technical Features of Luminescence Detectors 394
VI. Applications for Single-Photon Emission Computed Tomography 396
VII. Concluding Remarks 399
Chapter 19. Compton Cameras for Nuclear Medical Imaging 404
I. Introduction 404
II. Factors Governing System Performance 406
III. Analytical Prediction of System Performance 411
IV. Image Reconstruction for Compton Cameras 418
V. Hardware and Experimental Results 424
VI. Future Prospects for Compton Imaging 432
VII. Discussion and Summary 436
Chapter 20. Analytic Image Reconstruction Methods 442
I. Introduction 442
II. Data Acquisition 443
III. The Central Section Theorem 447
IV. Two-Dimensional Image Reconstruction 450
V. Three-Dimensional Image Reconstruction from X-Ray Projections 456
VI. Summary 462
Chapter 21. Iterative Image Reconstruction 464
I. Introduction 464
II. Tomography as a Linear Inverse Problem 465
III. Components of an Iterative Reconstruction Method 467
IV. Image Reconstruction Criteria 467
V. Iterative Reconstruction Algorithms 474
VI. Evaluation of Image Quality 484
VII. Summary 486
VIII. Appendices 486
Chapter 22. Attenuation, Scatter, and Spatial Resolution Compensation in SPECT 494
I. Review of the Sources of Degradation and Their Impact in SPECT Reconstruction 494
II. Nonuniform Attenuation Compensation 498
III. Scatter Compensation 505
IV. Spatial Resolution Compensation 511
V. Conclusion 515
Chapter 23. Kinetic Modeling in Positron Emission Tomography 520
I. Introduction 520
II. The One-Compartment Model: Blood Flow 523
III. Positron Emission Tomography Measurement of Regional Cerebral Glucose Use 527
IV. Receptor-Ligand Models 533
V. Model Simplifications 540
VI. Limitations to Absolute Quantification 543
VII. Functional Imaging of Neurochemistry—Future Uses 548
VIII. A Generalized Implementation of the Model Equations 553
Chapter 24. Computer Analysis of Nuclear Cardiology Procedures 562
I. Introduction 562
II. Advances in Single-Photon Emission Computed Tomography Instrumentation 562
III. Advances in Computer Methods 562
IV. Conclusion 570
Chapter 25. Simulation Techniques and Phantoms 572
I. Introduction 572
II. Sampling Techniques 573
III. Mathematical Phantoms 573
IV. Photon and Electron Simulation 575
V. Detector Simulation 577
VI. Variance Reduction Methods 578
VII. Examples of Monte Carlo Programs for Photon and Electrons 580
VIII. Examples of Monte Carlo Applications in Nuclear Medicine Imaging 581
IX. Conclusion 582
Index 586

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich