Primer of Lebesgue Integration -  H. S. Bear

Primer of Lebesgue Integration (eBook)

(Autor)

eBook Download: PDF
2001 | 2. Auflage
164 Seiten
Elsevier Science (Verlag)
978-0-08-052573-0 (ISBN)
Systemvoraussetzungen
65,86 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study.

Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.
The Lebesgue integral is now standard for both applications and advanced mathematics. This books starts with a review of the familiar calculus integral and then constructs the Lebesgue integral from the ground up using the same ideas. A Primer of Lebesgue Integration has been used successfully both in the classroom and for individual study. Bear presents a clear and simple introduction for those intent on further study in higher mathematics. Additionally, this book serves as a refresher providing new insight for those in the field. The author writes with an engaging, commonsense style that appeals to readers at all levels.

Front Cover 1
A Primer of Lebesgue Integration 2
Copyright Page 3
Contents 6
Preface to the First Edition 8
Preface to the Second Edition 12
Chapter 1. The Riemann–Darboux Integral 14
Chapter 2. The Riemann Integral as a Limit of Sums 22
Chapter 3. Lebesgue Measure on (0, 1) 34
Chapter 4. Measurable Sets: The Carathéodory Characterization 40
Chapter 5. The Lebesgue Integral for Bounded Functions 56
Chapter 6. Properties of the Integral 66
Chapter 7. The Integral of Unbounded Functions 74
Chapter 8. Differentiation and Integration 86
Chapter 9. Plane Measure 98
Chapter 10. The Relationship between µ and lemda 106
Chapter 11. General Measures 120
Chapter 12. Integration for General Measures 130
Chapter 13. More Integration: The Radon–Nikodym Theorem 140
Chapter 14. Product Measures 148
Chapter 15. The Space L2 162
Index 174

1

The Riemann-Darboux Integral


We start by recalling the definition of the familiar Riemann–Darboux integral of the calculus, which for brevity we will call the Riemann integral. Our later development of the Lebesgue integral will closely parallel this treatment of the Riemann integral. We consider a fixed bounded interval [a, b] and consider only real functions f which are bounded on [a,b].

A partition P of [a, b] is a set P = {x0, x1, x2,…, xn} of points of [a, b] with

=x0<x1<x2<…<xn=b.

Let f be a given function on [a, b] with

≤f(x)≤M

for all x ∈ [a, b]. For each i = 1, 2,…, n let

i=inf⁡{f(x):xi−1<x<xi},Mi=sup⁡{f(x):xi−1<x<xi}.

In the usual calculus text treatment the infs and sups are taken over the closed intervals [xi−1, xi]. In our treatment of the Lebesgue integral we will partition [a, b] into disjoint sets, so we use the disjoint sets (xi−1, xi) here. We are effectively ignoring a finite set of function values, f(x0), f(x1), f(x2),…, f(xn), and in so doing we anticipate the important result of Lebesgue that function values on a set of measure zero (here the set of partition points) are not relevant for either the Riemann or Lebesgue integral.

The lower sum L(f, P) and the upper sum U(f, P) for the function f and the partition P are defined as follows:

(f,P)=∑i=1nmi(xi−xi−1),U(f,P)=∑i=1nMi(xi−xi−1).

Clearly mmiMiM for each i, so

(b−a)≤L(f,P)≤U(f,P)≤M(b−a).

For a positive function f on [a, b] the lower sum represents the sum of the areas of disjoint rectangular regions which lie within the region

={(x,y):a≤x≤b,0≤y≤f(x)}.

Similarly, the upper sum U(f, P) is the area of a finite number of disjoint rectangular regions which cover the region S except for a finite number of line segments on the lines x = xi. The function f is said to be integrable whenever

PL(f,P)=inf⁡PU(f,P).

  (1)

The integral of f over [a, b] is the common value in (1) and is denoted abf. The area of S is defined to be this integral whenever f is integrable and non-negative.

The integral is also sometimes written abf(x)dx, particularly when a change of variable is involved. The “x” in this expression is a dummy variable and can be replaced by any variable except f or d. For example,

abf(x)dx=∫abf(t)dt=∫abf(a)da=∫abf(c)dc.

The last two versions are logically correct, but immoral, since they flout the traditional roles of a, b, c as constants, and the third integral discourteously uses the same letter for the limit and the dummy variable.

Now we make a few computations to derive the basic properties of the integral and show that the integral exists at least when f is continuous.

A partition Q is a refinement of the partition P provided each point of P is a point of Q. We will indicate this by writing P Q without reference to the numbering of the points in P or Q. Clearly Q is a refinement of P provided each of the subintervals of [a, b] determined by Q is contained in one of the subintervals determined by P.

Proposition 1

If P Q, then L(f, P) ≤ L(f, Q) and U(f, Q) ≤ U(f, P).

Proof

Suppose Q contains just one more point than P, and to be specific assume this additional point x* lies between the points x0 and x1 of P. if

1′=inf⁡{f(x):x0<x<x*}m1″=inf⁡{f(x):x*<x<x1}m1=inf⁡{f(x):x0<x<x1},

then 1′≥m1 and 1″≥m1 so the sum of the first two terms in L(f, Q) exceeds the first term of L(f, P):

1′(x*−x0)+m1″(x1−x*)≥m1(x1−x0).

The remaining terms of L(f, Q) and L(f, P) are the same, so L(f, Q) ≥ L(f, P). We can consider any refinement Q of P as obtained by adding one point at a time, with the lower sum increasing each time we add a point. The argument for the upper sums is similar.

Proposition 2

Every lower sum is less than or equal to every upper sum, as the geometry demands.

Proof

If P and Q are any partitions, and R = PQ is the common refinement, then

(f,P)≤L(f,R)≤U(f,R)≤L(f,Q).

Proposition 3

f is integrable on [a, b] if and only if for each ε > 0 there is a partition P of [a,b] such that U(f,P) − L(f,P) < ε.

Proof

This useful condition is equivalent to sup L(f, P) = inf U(f, P) in view of Proposition 2.

Proposition 4

If f is integrable on [a, b] and [α, β] ⊂ [a, b], then f is integrable on [α, β].

Proof

Let ε > 0 and let P be a partition of [a, b] such that U(f, P) − L(f, P) < ε. We can assume that α and β are points of P, since adding points increases L(f, P) and decreases U(f, P) and makes their difference smaller. If P0 consists of the points of P which are in [α, β], then P0 is a partition of [α, β]. Note that

(f,P)−L(f,P)=∑i=1n(Mi−mi)(xi−xi−1)

  (2)

and U (f, P0) − L(f, P0) is the sum of only those terms such that xi−1 and xiP0. Since we omit some non-negative terms from (2) to get U(f, P0)−L(f, P0),

(f,P0)−L(f,P0)≤U(f,P)−L(f,P)<ε.

Problem 1

If f is integrable on [a, b], then −f and ǀfǀ are integrable on [a, b], and ab(−f)=−∫abf,|∫abf|≤∫ab|f|.

Problem 2

If a < c < b then f is integrable on [a, c] and on [c, b] if and only if f is integrable on [a,b]. In this case

acf+∫cbf=∫abf.

Problem 3

If f is integrable on [a, b] and g = f except at a finite number of points, then g is integrable and abg=∫abf.

Problem 4

If a = x0 < x1 < … < xn = b and f is defined on [a, b] with f(x) = yi, for x ∈ (xi−1, xi), then f is integrable and abf=∑i=1nyi(xi−xi−1). (Note that it is immaterial how f is defined on the xi, by the preceding problem.)

Problem 5

We...

Erscheint lt. Verlag 16.10.2001
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Mathematik Analysis
Technik
ISBN-10 0-08-052573-3 / 0080525733
ISBN-13 978-0-08-052573-0 / 9780080525730
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich