Advances in Imaging and Electron Physics

Advances in Imaging and Electron Physics (eBook)

Optics of Charged Particle Analyzers
eBook Download: EPUB
2009 | 1. Auflage
373 Seiten
Elsevier Science (Verlag)
978-0-08-091216-5 (ISBN)
Systemvoraussetzungen
187,04 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy.
This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
* Contributions from leading international scholars and industry experts
* Discusses hot topic areas and presents current and future research trends
* Invaluable reference and guide for physicists, engineers and mathematicians
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. - Contributions from leading international scholars and industry experts- Discusses hot topic areas and presents current and future research trends- Invaluable reference and guide for physicists, engineers and mathematicians

Front Cover 1
Advances in Imaging and Electron Physics 4
Copyright 5
Dedication 6
Contents 8
Preface 14
Foreword 16
Future Contributions 20
Chapter 1: Charged Particles in Electromagnetic Fields 26
1.1. Electrostatic Fields 26
1.1.1. Electrostatic Field Strength and Electrostatic Potential 26
1.1.2. Electrostatic Fields in the Presence of Materials 27
1.1.3. Calculation of Electrostatic Fields 30
1.1.4. Common Types of Electrostatic Field Distributions 32
1.2. Magnetostatic Fields 36
1.2.1. Magnetostatic Fields and Magnetic Materials 36
1.2.2. Forming Magnetostatic Fields 40
1.2.3. Calculation of Magnetostatic Fields 43
1.2.4. Common Types of Magnetostatic Field Distributions 46
1.3. Charged Particle Motion in Electromagnetic Fields 48
1.3.1. General Relations 48
1.3.2. Scaling Laws for Charged Particle Motion in Static Fields 50
1.3.3. Symplectic Relation 52
Chapter 2: Language of Aberration Expansions in Charged Particle Optics 58
2.1. Aberration Expansions and Aberration Coefficients 58
2.2. Linear (Paraxial) Approximation 63
2.2.1. Geometric Terms of Paraxial Expansion 63
2.2.2. Description of Chromatically Inhomogeneous Charged Particle Beams 68
2.2.3. Paraxial Symplectic Relations 73
2.2.4. Transfer Matrices 76
2.2.5. Paraxial Properties of Symmetric Systems 78
2.2.6. General Integral Relation for the Rigidity Dispersion in Static Electromagnetic Fields 81
2.3. Image Aberrations 86
2.3.1. Aberrations in Systems with Two Planes of Symmetry 87
2.3.2. Aberrations in Systems with One Plane of Symmetry 92
2.3.3. Aberrations and Resolving Power 95
2.3.4. Symplectic Relations for Aberration Coefficients 96
2.3.5. High-Order Transfer Matrices 98
2.3.6. Elimination of Aberrations in Symmetric Multistage Systems 99
2.4. Calculation of Aberration Expansions 101
2.4.1. Trajectory Method 101
2.4.2. Fringing Field Integral Method 110
Chapter 3: Transporting Charged Particle Beams in Static Fields 120
3.1. Paraxial Geometric Parameters of Charged Particle Lenses 121
3.2. Axially Symmetric Electrostatic Lenses 123
3.2.1. Conventional Round Lenses 123
3.2.2. Lenses with Object or Image Immersed in the Field 128
3.3. Two-Dimensional and Nearly Two-Dimensional Electrostatic Lenses 130
3.3.1. Two-Dimensional Lenses 130
3.3.2. Transaxial Lenses 131
3.3.3. Hollow Lenses 134
3.4. Crossed Electrostatic Lenses with Essentially Three-Dimensional Fields 135
3.5. Focusing Charged Particles by Electrostatic Mirrors 137
3.6. Axially Symmetric Magnetic Lenses 138
3.7. Quadrupole Lenses and Quadrupole Multiplets 143
3.7.1. Focusing Charged Particles by Quadrupole Fields 144
3.7.2. Aberrations of Quadrupole Lenses 147
3.7.3. Quadrupole Multiplets 149
3.8. Charged Particle Motion Through Periodic Lens Channels 154
3.8.1. Linear Stability of Charged Particle Motion in Periodic Electrostatic Systems 155
3.8.2. Nonlinear Effects in Periodic Lens Channels 162
Chapter 4: Transporting Charged Particles in Radiofrequency Fields 166
4.1. Pseudopotential of an Inhomogeneous Radiofrequency Field 167
4.2. Transporting Charged Particles in Multipole Radiofrequency Fields 169
4.2.1. Quadrupole Radiofrequency Guide 169
4.2.2. Hexapole and Octopole Radiofrequency Guides 174
4.3. Radiofrequency Repelling Surfaces 176
4.4. Collisional Cooling in Gas-Filled Radiofrequency Guides 179
4.4.1. Transport of Ion Beams Through Gas-Filled Radiofrequency Guides 179
4.4.2. Simulation of Gas-Filled Radio Frequency Guides 184
4.5. Transporting Ions Through Radiofrequency Guides at Intermediate Gas Pressures 186
Chapter 5: Static Magnetic Charged Particle Analyzers 194
5.1. Linear Optic Properties and Aberrations of a Homogeneous Magnetic Field 194
5.2. Magnetic Sector Analyzers with Object and Image Located in the Field-Free Space 199
5.3. Focusing Action of Inclined Boundaries of Dipole Magnets 204
5.4. Sector Analyzers Using Inhomogeneous Magnetic Fields 207
5.5. Wedge Magnetic Analyzers 211
5.6. Correction of Image Aberrations in Magnetic Analyzers 212
5.6.1. Proper Shaping of Charged Particle Beams 212
5.6.2. Using Multipole Fields for Correction of Geometric and Chromatic Aberrations 214
5.6.3. Using Curved Sector Field Boundaries 219
5.6.4. Using Inhomogeneous Fields 220
5.6.5. Using Symmetric Field Arrangements 221
5.7. Multistage Sector Magnetic Analyzers 221
5.7.1. Rigidity Dispersion in Multiple Magnetic Sector Fields 222
5.7.2. Typical Combinations of Two-Sector Fields 222
5.7.3. Achromatic Multistage Systems 223
5.7.4. Magnetic Mass Analyzers with Energy Focusing 225
5.8. Gas-Filled Magnetic Separators 230
Chapter 6: Electrostatic Energy Analyzers 238
6.1. Sector Field Electrostatic Energy Analyzers 239
6.1.1. Cylindrical Deflector 239
6.1.2. Toroidal and Spherical Deflectors 242
6.1.3. Creating a Toroidal Field Distribution in a Cylindrical Deflector with Terminating Plates 248
6.1.4. Integral Relation for the Rigidity Dispersion in Electrostatic Sector Fields 251
6.1.5. Multistage Electrostatic Sector Analyzers 252
6.1.6. Preretardation of Charged Particles in Electrostatic Energy Analyzers 253
6.1.7. Fringing Field Effects in Electrostatic Sector Analyzers 254
6.2. Mirror-Type Electrostatic Energy Analyzers 264
6.2.1. Dispersion of Mirror-Type Analyzers 264
6.2.2. Analyzers Focusing in One Direction 267
6.2.3. Cylindrical Mirror Analyzer and its Modifications 270
6.2.4. Planar Field Analyzers Focusing in Two Directions 273
6.2.5. Rotationally Symmetric Mirror Analyzers with Axially Inhomogeneous Fields 275
6.3. Devices for Simultaneous Energy and Angular Analysis of Charged Particles 278
6.3.1. Polar-Toroidal Analyzer 278
6.3.2. Mirror Analyzers for Simultaneous Energy and Angular Analysis 281
Chapter 7: Mass Analyzers With Combined Electrostatic and Magnetic Fields 284
7.1. Sector Field Mass Analyzers with Energy Focusing 285
7.1.1. Integral Relation for the Rigidity Dispersion in Multistage Analyzers Comprising Electrostatic and Magnetic Sector Field 285
7.1.2. Mass Analyzers with Electrostatic and Magnetic Sectors Deflecting in One Direction 286
7.1.3. Mattauch-Herzog Mass Analyzer 288
7.2. Wien Filter 290
7.2.1. Paraxial Optical Properties and Aberrations of a Wien Filter 290
7.2.2. Integral Relation for the Rigidity Dispersion in a Wien Filter 293
7.2.3. Fringing Field Effects in a Wien Filter 295
7.3. Penning Traps 296
7.3.1. Fourier Transform Mass Detection 296
7.3.2. Ion Motion in Penning Traps 298
7.3.3. Excitation of Ion Motion in Penning Traps 303
7.3.4. Ion Injection into Penning Traps 305
Chapter 8: Time-of-Flight Mass Analyzers 308
8.1. Principle of Time-of-Flight Mass Analysis 308
8.2. Forming Pulsed Ion Beams 310
8.2.1. General Ways of Forming Short Ion Bunches 310
8.2.2. Trapping Pulsed Ion Converters 311
8.2.3. Orthogonal Accelerating Pulsed Ion Converter 312
8.2.4. Forming the Primary Time Focus 314
8.3. Energy-Isochronous Time-of-Flight Mass Analyzers Based on Ion Mirrors 318
8.3.1. Energy Focusing in One- and Two-Stage Ion Mirrors with Homogeneous Fields 318
8.3.2. Quadratic Ion Mirrors 322
8.4. Sector Field Energy-Isochronous Time-of-Flight Mass Analyzers 323
8.4.1. Time-of-Flight Mass and Energy Dispersions in Sector Fields 324
8.4.2. Examples of Geometries of Sector Field Time-of-Flight Mass Analyzers 328
8.5. Multireflection Time-of-Flight Mass Analyzers 331
8.5.1. Principles of Multireflection Time-of-Flight Mass Analyzers 331
8.5.2. Sector Field Multiturn Time-of-Flight Analyzers 334
8.5.3. Mirror-Type Multireflection Time-of-Flight Analyzers 336
Chapter 9: Radiofrequency Mass Analyzers 342
9.1. Quadrupole Mass Filter 342
9.1.1. Principle of Operation of a Quadrupole Mass Filter 342
9.1.2. Mathematical Description of Ion Motion in a Quadrupole Mass Filter 345
9.1.3. Ion Injection into a Quadrupole Filter 350
9.1.4. Nonlinear Effects Due to Field Imperfections in Quadrupole Mass Filters 352
9.1.5. Operation of Quadrupole Mass Filters in Higher-Order Stability Zones 356
9.1.6. Quadrupole Mass Filter in the Radiofrequency-Only Mode 358
9.2. Monopole Mass Filter 360
9.3. Paul Trap 362
9.3.1. Ion Motion in a Paul Trap 363
9.3.2. Injection of Ions Into Paul Traps 366
9.3.3. Ion Extraction from Paul Traps 367
9.3.4. Special Designs of Paul Traps 369
9.4. Linear Ion Trap 371
9.5. Combined Trap 373
References 376
Contents of Volumes 151-156 398
Index 400

Erscheint lt. Verlag 15.7.2009
Mitarbeit Herausgeber (Serie): Peter W. Hawkes
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Mathematik / Informatik Informatik
Naturwissenschaften Physik / Astronomie Angewandte Physik
Naturwissenschaften Physik / Astronomie Elektrodynamik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-08-091216-8 / 0080912168
ISBN-13 978-0-08-091216-5 / 9780080912165
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Sam Treiman

eBook Download (2024)
Princeton University Press (Verlag)
23,99