Cosmic Biology (eBook)
XXII, 338 Seiten
Praxis (Verlag)
978-1-4419-1647-1 (ISBN)
In Cosmic Biology, Louis Irwin and Dirk Schulze-Makuch guide readers through the range of planetary habitats found in our Solar System and those likely to be found throughout the universe. Based on our current knowledge of chemistry, energy, and evolutionary tendencies, the authors envision a variety of possible life forms. These range from the familiar species found on Earth to increasingly exotic examples possible under the different conditions of other planets and their satellites.
Discussions of the great variety of life forms that could evolve in these diverse environments have become particularly relevant in recent years with the discovery of around 300 exoplanets in orbit around other stars and the possibilities for the existence of life in these planetary systems. The book also posits a taxonomic classification of the various forms of life that might be found, including speculation on the relative abundance of different forms and the generic fate of living systems. The fate and future of life on Earth will also be considered. The closing passages address the Fermi Paradox, and conclude with philosophical reflections on the possible place of Homo sapiens in the potentially vast stream of life across the galaxies.
As a neurobiologist, Louis Neal Irwin has been a student of evolution, complexity, and behavior over a 40 year career of academic teaching and research. Irwin has published close to 60 original research articles, literature and book reviews, encyclopedia entries, and commentaries on the brain, behavior, and evolution, including one book ('Scotophobin') on the early development of neuroscience.
Ten years ago, Irwin became a Solar System Educator for NASA, originally in conjunction with the launch of the Cassini-Huygens Mission to Saturn but later as representative for all the robotic exploratory missions managed by the Jet Propulsion Lab. In that capacity he became familiar with the details of space exploration for the purpose of conducting teacher workshops. Soon thereafter, he also began a collaboration with Dirk Schulze-Makuch on research into the definition of life and the plausibility of searching for and finding life on other worlds. As NASA turned its attention to the emerging field of astrobiology, Schulze-Makuch and Irwin began to publish their research in that area, culminating in the joint authorship of 'Life in the Universe: Expectations and Constraints,' which many regard as the definitive work in the field of astrobiology for the technical specialist.
Dirk Schulze-Makuch
As a trained hydrogeologist Dirk Schulze-Makuch entered the field of astrobiology by studing extremophilic organisms in hot springs. Propelled by a major NASA grant Dirk then joined the Europa Focus Group and some time later the Titan Focus Group of the NASA Astrobiology Institute. Recent interests include nearly all aspects of astrobiology including mission-aligned efforts to detect life on Mars and the search for extraterrestrial intelligence.
In Cosmic Biology, Louis Irwin and Dirk Schulze-Makuch guide readers through the range of planetary habitats found in our Solar System and those likely to be found throughout the universe. Based on our current knowledge of chemistry, energy, and evolutionary tendencies, the authors envision a variety of possible life forms. These range from the familiar species found on Earth to increasingly exotic examples possible under the different conditions of other planets and their satellites.Discussions of the great variety of life forms that could evolve in these diverse environments have become particularly relevant in recent years with the discovery of around 300 exoplanets in orbit around other stars and the possibilities for the existence of life in these planetary systems. The book also posits a taxonomic classification of the various forms of life that might be found, including speculation on the relative abundance of different forms and the generic fate of living systems. The fate and future of life on Earth will also be considered. The closing passages address the Fermi Paradox, and conclude with philosophical reflections on the possible place of Homo sapiens in the potentially vast stream of life across the galaxies.
Cosmic Biology 3
Contents 5
Preface 15
Illustrations 19
1 Rare Earths and Life Unseen 23
1.1 How habitats come about 25
1.1.1 Genesis: A scientific story of creation 25
1.1.2 How solar systems and planets form 27
1.1.3 Exoplanets 29
1.2 The Rare Earth model 31
1.3. The Life Unseen model 32
1.4. Strategy for the study of cosmic biology 33
1.5 Chapter summary 35
1.6 References and further reading 36
2 Life, Chemistry, Action! 37
2.1 The challenge of defining "life" 37
2.1.1 Life as a duality of process and entity 38
2.1.2 Defining a living organism 39
2.2 Matter gone wild: the special chemistry of life 43
2.2.1 The elemental composition of living things 44
2.2.2 Biomolecules 47
2.2.3 Macromolecules 51
2.3 The advantages of liquids for life 54
2.3.1 General properties of liquids 54
2.3.2 The special properties of water 56
2.4 The need for and sources of energy for living systems 58
2.4.1 Oxidation-reduction chemistry 58
2.4.2 Thermal energy 60
2.4.3 Kinetic energy 61
2.4.4 Ionic diffusion 61
2.4.5 Osmosis 62
2.4.6 Other sources of energy 63
2.5 Chapter summary 64
2.6 References and further reading 65
3 Life's Fundamentals 67
3.1 Beginnings 67
3.1.1 A nine-step program for the origin of life on Earth 67
3.1.2 Qualifications and limitations 73
3.1.3 Alternative origin scenarios 74
3.1.3.1 A lukewarm water origin for life 74
3.1.3.2 A cold water origin for life 75
3.2 Organic evolution: the process of biological change through time 76
3.2.1 Selection 77
3.2.2 Chance 80
Mutation 80
Sexual Reproduction 81
Genetic Bottlenecks 81
Genetic drift 82
3.2.3 Heredity 82
3.3 Ecosystems: f r om populations to pyramids 83
3.3.1 Food webs 83
3.3.2 Trophic structures 83
3.4 Chapter summary 86
3.5 References and further reading 88
4 Fire and Water 90
4.1 Nature of Earth 90
4.1.1 Atmosphere 91
4.1.2 Building blocks 91
4.1.3 Energy 91
4.1.4 Temperature 91
4.1.5 Topography 92
4.1.6 Cycles 93
4.1.7 Conditions for life on Earth 93
4.1.8 Facts consistent with the existence of life on Earth 94
4.1.9 Possible assumptions about the nature of Earth's biosphere 95
4.2 A model for the history of life on Earth 95
4.2.1 Origin of life on Earth 95
4.2.2 Early stages of life on Earth 96
4.2.3 The dilemma of oxygen and the earliest forms of life 97
4.2.4 Transition to multicellularity 97
4.2.5 A brief descriptive history of life on Earth 100
4.2.5.1 Transition to larger, active organisms 102
4.2.5.2 Transition from water to air 102
4.2.5.3 Flight, Fur, and Flowers 106
4.2.5.4. Transition to the Modem World 107
4.3 A deduced biosphere for Earth 110
4.3.1 Trophic levels of life on Earth 111
Producers 113
Primary Consumers 113
Secondary Consumers 113
Tertiary Consumers 114
Multi-level consumers: parasites 114
Decomposers 114
4.3.2 Ecosystems on Earth 115
4.3.2.1 Marine ecosystems 115
4.3.2.2 Terrestrial ecosystems 115
4.3.2.3 Fresh Water Ecosystems 115
4.3.3 Biotic Communities on Earth 116
4.3.3.1 Marine Tropics 116
4.3.3.2 Terrestrial tropics 116
4.3.3.3 Marine temperate zones 116
4.3.3.4 Terrestrial temperate zones 117
4.3.3.5 Fresh water communities 117
4.3.3.6 Polar life zones 117
4.4 Characteristics of biota on Earth 117
4.4.1 Metabolism 117
4.4.2 Reproduction 118
4.4.3 Motility 119
4.4.4 Sensory systems 119
4.4.5 Cognition 120
4.4.6 Technology 121
4.5 What alien observers could get wrong about life on Earth 122
4.6 Chapter summary 123
4.7 References and further reading 124
5 Frozen Desert 126
5.1 Peeling through layers of Martian mystery 126
5.2 Overview of Martian planetary history 132
5.3 Reconstructing a plausible evolutionary history for putative life on Mars 136
5.3.1 Rise of the autotrophs 137
5.3.2 Phototrophic diversification 137
5.3.3 The heterotrophic succession 139
5.3.4 Colonial heterotrophs ensue 139
5.3.5 Offshoots of colonial life diversify 140
5.3.6 A succession of subterranean retreats 140
5.3.7 The sanctuary of caves 141
5.3.8 Living stones 142
5.3.9 Cryptobionts 142
5.3.10 Fossil remnants and life unseen 142
5.4 A putative Martian biosphere 143
5.5 Ecosystems on Mars 145
5.6 Biotic communities on Mars 146
5.7 Earth analogues of Martian habitats 147
5.8 Characteristics of life on Mars 149
5.8.1 Metabolism 149
5.8.2 Reproduction 149
5.8.3 Motility 150
5.8.4 Sensory Systems 151
5.8.5 Cognition 151
5.9 What could be wrong with this picture? 151
5.10 Life may have been discovered on Mars already 152
5.11 Chapter summary 154
5.12 References and further reading 155
6 Hell Fire and Brimstone 157
6.1 Nature of Venus 157
6.1.1 Atmosphere 158
6.1.2 Topography 159
6.1.3 Volcanism 160
6.1.4 Tectonic features 162
6.2 Planetary history of Venus 163
6.3 A possible evolutionary history for putative life on Venus 165
6.3.1 Life in the age of water on Venus 165
6.3.2 Life as Venus became hotter and the water evaporated 167
6.3.3 The possibility of life below the surface of Venus 168
6.3.3.1 Carbon-based life 168
6.3.3.2 Silicon-based life 168
6.4 The prospect of finding fossil evidence of life on Venus 169
6.5 Ecosystem possibilities for life on Venus 169
6.6 Characteristics of life on Venus 170
6.7 Possibilities for life on exoplanets like Venus 170
6.8 Chapter summary 171
6.8 References and further reading 172
7 Suspended Animation 173
7.1 Prospects for Life in the Clouds of Venus 173
7.1.1 Composition and characteristics of Venusian clouds 174
7.1.2 Properties conducive to life in the clouds of Venus 175
7.1.2.1 Temperature and pressure 175
7.1.2.2 Water, acidity, and organic chemistry 175
7.1.2.3 Sources of Energy 176
7.1.2.4 Habitat stability 176
7.1.3 Challenges for life in the clouds of Venus 177
7.1.4 Possible trajectories for the evolution of life in the clouds of Venus 177
7.1.5 Ecosystem possibilities in the clouds of Venus 180
7.2 Prospects for life in the atmospheres of gas giant planets 180
7.2.1 Composition of the gas giants 181
7.2.1.1 Jupiter 182
7.2.1.2 Saturn 182
7.2.1.3 Uranus 184
7.2.1.4 Neptune 184
7.2.2 Conceivable habitats for life on the gas giants 184
7.2.3 Assessing the plausibility of life in the atmosphere of the gas giants 186
7.2.3.1 Gas giants elsewhere may surprise us 187
7.2.3.2 What about "life" outside conventional definitions? 187
7.2.3.3 What about the immigration of life from another world? 188
7.3 Prospects for life in the atmospheres of exoplanets 189
7.4 Chapter summary 190
7.5 References and further reading 192
8 Deep and Dark 193
8.1 Nature of Europa 193
8.2. Planetary history of the Jovian satellites 196
8.3 Conditions for life on Europa 198
8.4 Energy for life on Europa 198
8.4.1 Light 198
8.4.2 Radiation 199
8.4.3 Chemistry 199
8.4.4 Fluid in motion 199
8.4.5 Osmotic and ionic gradients 200
8.4.6 Heat 200
8.4.7 Other long-shot possibilities 203
8.5 Forms of life on Europa 203
8.5.1 Producers 203
8.5.2 Consumers 205
8.6 Possible evolutionary history for putative life on Europa 206
8.7 Ecosystems on Europa 209
8.8 Biotic communities on Europa 213
8.8.1 The near-surface community 213
8.8.2 The ice ceiling community 213
8.8.3 The benthic community 213
8.8.4 The pelagic community 214
8.9 Characteristics of Europan biota 214
8.9.1 Metabolism 214
8.9.2 Reproductive systems 214
8.9.3 Motility 215
8.9.4 Sensory systems 215
8.9.5 Cognition 215
8.10 Properties of Europa not conducive for life 216
8.11 Enceladus: variations on a theme 216
8.12 Significance of the potential for life on Europa or Enceladus 218
8.13 Chapter summary 219
8.14 References and further reading 219
9 Fire and Ice 221
9.1 Nature of lo 221
9.1.1 Geology 222
9.1.1.1 Interior 223
9.1.1.2 Volcanism 223
9.1.1.3 Geochemistry 225
9.1.1.4 Topology 225
9.1.2 Thermal environment 227
9.1.3 Radiation environment 229
9.2 Planetary history of Io 230
9.3 Conditions for life on Io 230
9.3.1 Solvents for life on Io 232
9.3.2 Chemical building blocks for life on Io 233
9.3.2 Energy for life on lo 234
9.4 Origin of life on lo 234
9.5 Habitats for life on Io 235
9.6 A possible evolutionary history for life on Io 236
9.7 Ecosystem possibilities for life on Io 238
9.8 Characteristics of life on Io 239
9.8.1 Radiation resistance 239
9.8.2 Metabolism 240
9.8.3 Growth and reproduction 240
9.8.4 Motility 240
9.8.5 Sensory Systems 240
9.8.6 Cognition 241
9.9 Chapter summary 241
9.10 References and further reading 242
10 Petrolakes 244
10.1 Nature of Titan 245
10.1.1 Atmosphere and climate 245
10.1.2 Topography 247
10.1.3 Interior 250
10.2 Planetary history of Titan 251
10.3 Conditions (good and bad) for life on Titan 253
10.3.1 Chemistry 253
10.3.1.1 Chemistry for building blocks 253
10.3.1.2 Chemistry for energy 254
10.3.1.3 Chemistry for solvents 256
10.3.2 Temperature 256
10.3.3 Habitats 256
10.4 A possible evolutionary history for putative life on Titan 258
10.4.1 An aqueous origin and evolution for life on Titan 259
10.4.2 A hydrocarbon habitat for the origin and evolution of life on Titan 260
10.5 Ecosystem possibilities for life on Titan 264
10.6 Characteristics of life on Titan 264
10.6.1 Metabolism 264
10.6.2 Growth and reproduction 265
10.6.3 Motility 266
10.6.4 Sensory Systems 266
10.6.5 Cognition 267
10.7 Note of caution 267
10.8 Chapter summary 268
10.9 References and further reading 269
11 Exotic Cocktails 271
11.1 Nature of dwarf planets 272
11.2 Outline of the history of dwarf planets like Pluto and Triton 273
11.3 Nature of Pluto and Charon 274
11.4 Nature of Triton 276
11.4.1 Composition and chemistry 276
11.4.2 Atmosphere 277
11.4.3 Topography 277
11.4.4 Geological activity 280
11.5 Conditions conducive for life on Triton and Pluto 280
11.5.1 Energy for life on Triton 280
11.5.2 Building blocks for life on Triton 282
11.5.3 Solvents for life on Triton 283
11.5.4 Habitats for life on Triton 284
11.6 Scenarios for the possible evolution of life on Triton 284
11.7 Chapter summary 287
11.8 References and further reading 288
12 Biocomplexity in the Cosmos 290
12.1 Evolution of size, complexity, and biodiversity 290
12.1.1 Energy 291
12.1.2 Temperature 291
12.1.3 Mobility 292
12.1.4 Time 292
12.1.5 Habitat fractionation 293
12.1.6 Planetary history 293
12.2 Evolution of intelligence 294
12.2.1 What is intelligence? 295
12.2.2 Under what circumstances does intelligence arise? 298
12.2.3 Under what circumstances has meta-intelligence arisen? 300
12.2.4 Why has intelligence arisen so rarely on Earth? 300
12.3 Emergence of technology 302
12.3.1 Under what conditions does technology arise? 302
12.3.2 Why has technology arisen more rarely than intelligence on Earth? 304
12.4 Where are they? Dealing with the Fermi Paradox 306
12.4.1 The improbability of discovery 306
12.4.2 The disincentive for contact 307
12.4.3 The possibility of past or present visitations 308
12.4.4 The possibility that technology is self-limiting 308
12.4.5 Argument by analogy: the discovery and fate of the Hawaiian Islands 309
12.5 Chapter Summary 310
12.6 References and further reading 310
13 Anticipating the Future 312
13.1 Three prospects for any form of life 312
13.1.1 Plateau 312
13.1.2 Extinction 314
13.1.3 Transition 314
13.2 Thoughts on the relative frequency of different forms of life 316
1 3.2.1 Biodiversity in the Solar System under the familiar scenario 316
1 3.2.2 Biodiversity in the Solar System under the exotic scenario 317
1 3.2.3 Biodiversity in the cosmos under the familiar scenario 317
1 3.2.4 Biodiversity in the cosmos under the exotic scenario 318
13.2.5 Revisiting the Rare Earth Hypothesis 318
13.3 The fate and future of life on Earth 319
13.3.1 Fate of human life 320
13.3.1.1 As organic forms 321
13.3.1.2 As mechanical forms 321
13.3.2 Fate of insects 322
1 3.3.3 Fate of everything else 323
1 3.3.4 Summary of the fate of life on Earth 324
13.4 The fate and future of life on other worlds 324
13.5 Chapter summary 324
13.6 References and further reading 326
Glossary 327
Index 342
Erscheint lt. Verlag | 8.12.2010 |
---|---|
Reihe/Serie | Popular Astronomy |
Popular Astronomy | |
Springer Praxis Books | Springer Praxis Books |
Zusatzinfo | XXII, 338 p. |
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Studium ► 1. Studienabschnitt (Vorklinik) ► Biochemie / Molekularbiologie | |
Naturwissenschaften ► Biologie | |
Naturwissenschaften ► Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Technik | |
Schlagworte | Astrobiology studies • Chemistry of living systems • Extraterrestrial Life • Fermi Paradox • Life in other planets • Nature and definition of life • Taxonomy of Living Systems |
ISBN-10 | 1-4419-1647-4 / 1441916474 |
ISBN-13 | 978-1-4419-1647-1 / 9781441916471 |
Haben Sie eine Frage zum Produkt? |
Größe: 146,6 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich