Modelling and Applications of Transport Phenomena in Porous Media
Springer (Verlag)
978-0-7923-1443-1 (ISBN)
1 EIGHT LECTURES ON MATHEMATICAL MODELLING OF TRANSPORT IN POROUS MEDIA.- 1.1 Lecture One: Introduction.- 1.2 Lecture Two: Microscopic Balance Equations.- 1.3 Lecture Three: Macroscopic Balance Equations.- 1.4 Lecture Four: Advective Flux.- 1.5 Lecture Five: Complete Transport Model.- 1.6 Lecture Six: Modelling Mass Transport of a Single Fluid Phase Under Isothermal Conditions.- 1.8 Lecture Eight: Modelling Contaminant Transport.- References.- List of Main Symbols.- 2 MULTIPHASE FLOW IN POROUS MEDIA Th. DRACOS Swiss Federal Inst. of Technology (E.T.H.) Zurich, Switzerland.- 2.1 Capillary Pressure.- 2.2 Flow Equations for Immiscible Fluids.- 2.3 Mass Balance Equations.- 2.4 Simultaneous Flow of Two Fluids having a Small Density Difference.- 2.5 Measurement of the relations pc?i(S?i), and kr,?i(S?i).- 2.6 Mathematical descripton of the relations between pc,wSwand k,r,w.- 2.7 Complete Statement of Multiphase Flow Problems.- 2.8 Solute transport in multiphase flow through porous media.- References.- List of Main Symbols.- 3 PHASE CHANGE PHENOMENA AT LIQUID SATURATED SELF HEATED PARTICULATE BEDS J-M. BUCHLIN and A. STUBOS von Karman Institute for Fluid Dynamics Rhode Saint Genèse B-1640, Belgium.- 3.1 Introduction.- 3.2 Preboiling Phenomenology.- 3.3 Boiling regime and dryout heat flux.- 3.4 Constitutive Relationships-Bed Disturbances.- 3.5 Conclusions.- A. Zero-Dimensional Model.- B. Fractional downward heat flux by conduction.- C. Sub cooled zone thickness at the top of the bed.- References.- List of Main Symbols.- 4 HEAT TRANSFER IN SELF-HEATED PARTICLE BEDS SUBMERGED IN LIQUID COOLANT KENT MEHR and JORGEN WÜRTZ Commission of the European Communities Joint Research Centre, Ispra, Italy.- 4.1 The PAHR Scenario.- 4.2 Specific PAHR Phenomena.- 4.3 PAHR-2D.- 4.4 In-pileexperiments.- References.- List of Main Symbols.- 5 PHYSICAL MECHANISMS DURING THE DRYING OF A POROUS MEDIUM CH. MOYNE, CH. BASILICO, J. CH. BATSALE and A._DEGIOVANNI. Laboratoire d’Energétique et de Mécanique Théorique et Appliquée U.A. C.N.R.S. 875, Ecoles des Mines, Nancy, France.- 5.1 General Aspects of the Drying Process.- 5.2 A General Model for Simultaneous Heat and Mass Transfer in a Porous Medium.- 5.3 Application to Drying.- 5.4 Conclusions.- References.- List of Main Symbols.- 6 STOCHASTIC DESCRIPTION OF POROUS MEDIA G. DE MARSILY Ecole des Mines de Paris, l’Université Pierre et Marie Curie Paris, France.- 6.1 Definition of Properties of Porous Media: The Example of Porosity.- 6.2 Stochastic Approach to Permeability and Spatial Variability.- 6.3 Stochastic Partial Differential Equations.- 6.4 Example of stochastic solution to the transport equation.- 6.5 The problem of estimation of a RF by kriging.- 6.6 The intrinsic hypothesis: definition of the variogram.- 6.7 Conclusions.- References.- List of Main Symbols.
Erscheint lt. Verlag | 30.11.1991 |
---|---|
Reihe/Serie | Theory and Applications of Transport in Porous Media ; 5 |
Zusatzinfo | XII, 381 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Geologie |
Naturwissenschaften ► Geowissenschaften ► Hydrologie / Ozeanografie | |
Naturwissenschaften ► Physik / Astronomie ► Mechanik | |
ISBN-10 | 0-7923-1443-3 / 0792314433 |
ISBN-13 | 978-0-7923-1443-1 / 9780792314431 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich