Machine Learning Tools for Chemical Engineering - Francisco Javier López-Flores, Rogelio Ochoa-Barragán, Alma Yunuen Raya-Tapia, César Ramírez-Márquez, José Maria Ponce-Ortega

Machine Learning Tools for Chemical Engineering

Methodologies and Applications
Buch | Softcover
352 Seiten
2025
Elsevier - Health Sciences Division (Verlag)
978-0-443-29058-9 (ISBN)
238,15 inkl. MwSt
Machine Learning Tools for Chemical Engineering: Methodologies and Applications explores the integration of Machine Learning (ML) techniques within the chemical engineering domain. This book highlights the precision, speed, and flexibility of ML solutions in addressing complex challenges that traditional methods struggle with. It offers both practical tools and a theoretical framework, combining knowledge modeling, representation, and management tailored to the unique needs of chemical engineering. Beyond the introduction of ML, the book delves into philosophies such as knowledge modeling, knowledge representation, search and inference, and knowledge extraction and management.

It is an invaluable resource for graduate students, researchers, educators, and industry professionals aiming to optimize and innovate in chemical processes through ML applications.

Francisco Javier López Flores received his Master’s and Ph.D. degrees from the Chemical Engineering Department at the Universidad Michoacana de San Nicolás de Hidalgo in Mexico in 2020 and 2024, respectively. His research interests include process optimization, energy integration, planning strategies, and machine learning. He has published more than ten scientific papers and presented his research at ten international and regional conferences. Rogelio Ochoa-Barragán earned his Ph.D. and Master’s degrees in Chemical Engineering from the Universidad Michoacana de San Nicolás de Hidalgo in Mexico in 2020 and 2024, respectively. His current research focuses on process optimization, energy network management, social justice, and machine learning. His work has been presented at eleven international and regional conferences. He has published more than ten scientific articles and contributed to two books. Alma Yunuen Raya Tapia is currently pursuing a Ph.D. in Chemical Engineering at the Universidad Michoacana de San Nicolás de Hidalgo. She earned her Master of Science in Chemical Engineering in 2021 with honors, following a degree in Chemical Engineering from the Technological Institute of Lázaro Cárdenas in 2019. Her research focuses on materials synthesis, photocatalysis, dye degradation, wastewater treatment, and the strategic planning of the water-energy-food nexus, combined with machine learning techniques. She has published more than ten scientific articles and presented her work at five international and national conferences. César Ramírez-Márquez is a Postdoctoral Fellow at the Chemical Engineering Department of the Universidad Michoacana de San Nicolás de Hidalgo, Mexico. He earned his Ph.D. from the University of Guanajuato, Mexico, in 2020. His current research focuses on the production of materials for the solar energy industry and base chemicals in the chemical industry. He has published more than 55 journal papers, six book chapters, presented his work at over fifteen international and regional conferences, and holds four patents. José María Ponce-Ortega is a Professor in the Chemical Engineering Department at the Universidad Michoacana de San Nicolás de Hidalgo, Mexico. He earned his Ph.D. and Master’s degrees in Chemical Engineering from the Institute of Technology of Celaya, Mexico, in 2009 and 2003, respectively. He completed postdoctoral research at Texas A&M University, USA, and served as a visiting scholar at Carnegie Mellon University, USA. Dr. Ponce-Ortega is a full professor and a member of the National Research System of Mexico. His research focuses on the optimization of chemical processes, sustainable design, energy, mass, water, and property integration, and supply chain optimization. He has published more than 310 papers, five books, and 60 book chapters. He has supervised 30 Ph.D. students and 50 Master’s students and secured funding for 15 research projects totaling approximately $1,000,000. Dr. Ponce-Ortega serves on the editorial boards of Clean Technologies and Environmental Policy and Process Integration and Optimization for Sustainability, and is a subject editor for Sustainable Production and Consumption, as well as associate editor in Frontiers in Chemical Engineering.

Section I: Introduction to Machine Learning for Chemical Engineering
1. Introduction to Machine Learning
2. Data Science in Chemical Engineering
3. Fundamentals of Machine Learning Algorithms

Section II: Tools and Software
4. Machine Learning with Python
5. Machine Learning with R

Section lll: Supervised Learning, Unsupervised Learning and Optimization
6. Linear and polynomial regression
7. Support Vector Machines
8. Decision Trees and Random Forests
9. Deep Learning
10. Clustering and Dimensionality Reduction
11. Machine Learning Model Optimization
12. Machine Learning in Chemical Processes
13. Machine learning in Supply Chain Management
14. Machine Learning in Energy Integration
15. Machine Learning in Time Series Forecasting
16. Machine Learning in Optimal Water Management in the Exploitation of Unconventional Fossil Fuels
17. Challenges and Future Scope

Erscheint lt. Verlag 1.5.2025
Verlagsort Philadelphia
Sprache englisch
Maße 152 x 229 mm
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Chemie Technische Chemie
Technik
ISBN-10 0-443-29058-X / 044329058X
ISBN-13 978-0-443-29058-9 / 9780443290589
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
28,00