Advanced Electrochemical Materials in Energy Conversion and Storage -

Advanced Electrochemical Materials in Energy Conversion and Storage

Junbo Hou (Herausgeber)

Buch | Softcover
378 Seiten
2024
CRC Press (Verlag)
978-0-367-68049-7 (ISBN)
59,95 inkl. MwSt
This book focuses on electrochemical energy conversion and storage and introduces novel materials designed for specific energy applications. It presents the relationship of materials properties, processing, and device performance and sheds light on research, development, and deployment of emerging materials and technologies in this field.
This book focuses on novel electrochemical materials particularly designed for specific energy applications. It presents the relationship between materials properties, state-of-the-art processing, and device performance and sheds light on the research, development, and deployment (RD&D) trend of emerging materials and technologies in this field.

Features:






Emphasizes electrochemical materials applied in PEM fuel cells and water splitting



Summarizes anode, cathode, electrolyte, and additive materials developed for lithium-ion batteries and reviews other batteries, including lithium-air, lithium-sulfur, sodium- and potassium-ion batteries, and multivalent-ion batteries



Discusses advanced carbon materials for supercapacitors



Highlights catalyst design and development for CO2RR and fundamentals of proton facilitated reduction reactions

With a cross-disciplinary approach, this work will be of interest to scientists and engineers across chemical engineering, mechanical engineering, materials science, chemistry, physics, and other disciplines working to advance electrochemical energy conversion and storage capabilities and applications.

Junbo Hou received his B.S. and M.S. degrees from Harbin Institute of Technology, Harbin, China in 2003 and 2005, respectively, and his Ph.D. degree from Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China in 2008, all in Chemical Engineering, particularly Electrochemical Engineering. From 2008 to 2010, he was with Montanuniversität Leoben and Erich-Schmid-Institut für Materialwissenschaft (ESI), ÖAW, as a Researcher, working on electroceramic materials and high resolution transmission electron microscopy (HRTEM). From 2010 to 2012, he was with Institute of Critical Technology and Applied Science (ICTAS), Virginia Tech, as a Research Scientist, while simultaneously engaged in research work at Department of Mechanical Engineering and Department of Chemistry, Virginia Tech. In 2013, he started working in a startup company SAFCell, Inc of California Institute of Technology (Caltech). In 2016, he was invited to join CEMT as a Chief Scientist responsible for the development and production of proton exchange membrane (PEM) fuel cell engines for vehicles. Since May 2008, he has been Associate Professor at Shanghai Jiao Tong University and has continued to conduct research on fuel cells and batteries. He has published 53 peer-reviewed journal papers and contributed two invited book chapters in the area of electrochemical energy conversion and storage. He also holds 19 Chinese patents. He is currently an Outstanding Scientist of Thousand Talent Program of Zhejiang, China, a member of the National Fuel Cell Standardization Technical Committee, and a member of the APEC Sustainable Energy Center's domestic expert team.

1. Catalyst Support Materials for Proton Exchange Membrane Fuel Cells 2. Recent Advances in Low PGM for Fuel Cell Electrocatalysis 3. Ultralow Pt Loading for a Completely New Design of PEM Fuel Cells 4. Outlines for the Next-Generation Cathode Materials Utilized in Lithium Batteries 5. Cathode Materials for Lithium-Sulfur Batteries 6. Anode Materials for Lithium-Sulfur Batteries 7. Interlayer of Lithiun-Sulfur Batteries 8. Principles and Status of Lithium-Sulfur Batteries 9. Solid-State Batteries and Interface Issues 10. Key Electrode Materials for Lithium-Ion Capacitor Batteries 11. Solar-Induced Co2 Electro-Thermochemical Conversion and Emission Reduction Principles 12. Co2 Electrochemical Reduction to CO: From Catalysts, Electrodes to Electrolytic Cells and Effect of Operating Conditions 13. Improving the Electrocatalytic Performance by Defect Engineering and External Field Regulation

Erscheinungsdatum
Reihe/Serie Emerging Materials and Technologies
Zusatzinfo 11 Tables, black and white; 132 Line drawings, black and white; 42 Halftones, black and white; 174 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 725 g
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
ISBN-10 0-367-68049-1 / 0367680491
ISBN-13 978-0-367-68049-7 / 9780367680497
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen, technische Anwendungen, Rohstoffe, Analytik und …

von Peter Kurzweil

Buch | Softcover (2023)
Springer Vieweg (Verlag)
39,99
erneuerbare Energien und Speichertechnologien für die Energiewende

von Jürgen Karl

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Daten, Formeln, Normen, vergleichende Betrachtungen

von Walter Bierwerth

Buch | Softcover (2024)
Europa-Lehrmittel (Verlag)
38,90