Fundamentals and Practice in Statistical Thermodynamics (eBook)
768 Seiten
Wiley (Verlag)
978-1-394-16143-0 (ISBN)
Bridge the gap between thermodynamic theory and engineering practice with this essential textbook
Thermodynamics is a discipline which straddles the fields of chemistry, physics, and engineering, and has long been a mainstay of undergraduate and graduate curricula. Conventional thermodynamics courses, however, often ignore modern developments in statistical mechanics, such as molecular simulation methods, cooperative phenomena, phase transitions, universality, as well as liquid-state and polymer theories, despite their close relevance to both fundamental research and engineering practice. Fundamentals and Practice in Statistical Thermodynamics fills this gap with an essential book that applies up-to-date statistical-mechanical techniques to address the most crucial thermodynamics problems found in chemical and materials systems. It is ideally suited to introduce a new generation of researchers and molecular engineers to modern thermodynamic topics with numerous cutting-edge applications.
From Fundamentals and Practice in Statistical Thermodynamics readers will also find:
- An introduction to statistical-mechanical methods including molecular dynamics simulation, Monte Carlo simulation, as well as the molecular theories of phase transitions, classical fluids, electrolyte solutions, polymeric materials, and more
- Illustrative examples and exercise problems with solutions to facilitate student understanding
- Supplementary online materials covering the basics of quantum mechanics, density functional theory, variational principles of classical mechanics, intermolecular interactions, and many more subjects
Fundamentals and Practice in Statistical Thermodynamics is ideal for graduate and advanced undergraduate students in chemical engineering, biomolecular engineering, environmental engineering, materials science and engineering, and all related scientific subfields of physics and chemistry.
Jianzhong Wu, PhD, is a member of the faculty of the Deparmtnet of Chemical and Environmental Engineering and the cooperating/collaborating faculty of Bioengineering, Materials Science and Engineering, and Mathematics Department at the University of California, Riverside. He is an elected fellow fo the American Physical Society and the American Institute for Medical and Biological Engineering
John M. Prausnitz, PhD, is a professor of chemical engineering at the University of California, Berkeley. He is a member of the National Academy of Sciences, National Academy of Engineering, and American Academy of Arts and Sciences. He is also a recipient of the National Medal of Science in recognition of his pioneering work on engineering-oriented molecular thermodynamics.
Bridge the gap between thermodynamic theory and engineering practice with this essential textbook Thermodynamics is a discipline which straddles the fields of chemistry, physics, and engineering, and has long been a mainstay of undergraduate and graduate curricula. Conventional thermodynamics courses, however, often ignore modern developments in statistical mechanics, such as molecular simulation methods, cooperative phenomena, phase transitions, universality, as well as liquid-state and polymer theories, despite their close relevance to both fundamental research and engineering practice. Fundamentals and Practice in Statistical Thermodynamics fills this gap with an essential book that applies up-to-date statistical-mechanical techniques to address the most crucial thermodynamics problems found in chemical and materials systems. It is ideally suited to introduce a new generation of researchers and molecular engineers to modern thermodynamic topics with numerous cutting-edge applications. From Fundamentals and Practice in Statistical Thermodynamics readers will also find: An introduction to statistical-mechanical methods including molecular dynamics simulation, Monte Carlo simulation, as well as the molecular theories of phase transitions, classical fluids, electrolyte solutions, polymeric materials, and more Illustrative examples and exercise problems with solutions to facilitate student understandingSupplementary online materials covering the basics of quantum mechanics, density functional theory, variational principles of classical mechanics, intermolecular interactions, and many more subjects Fundamentals and Practice in Statistical Thermodynamics is ideal for graduate and advanced undergraduate students in chemical engineering, biomolecular engineering, environmental engineering, materials science and engineering, and all related scientific subfields of physics and chemistry.
Erscheint lt. Verlag | 8.7.2024 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
ISBN-10 | 1-394-16143-3 / 1394161433 |
ISBN-13 | 978-1-394-16143-0 / 9781394161430 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich