Two-dimensional Product-Cubic Systems, Vol. I
Springer International Publishing (Verlag)
978-3-031-57091-9 (ISBN)
This book, the fifth of 15 related monographs, presents systematically a theory of product-cubic nonlinear systems with constant and single-variable linear vector fields. The product-cubic vector field is a product of linear and quadratic different univariate functions. The hyperbolic and hyperbolic-secant flows with directrix flows in the cubic product system with a constant vector field are discussed first, and the cubic product systems with self-linear and crossing-linear vector fields are discussed. The inflection-source (sink) infinite equilibriums are presented for the switching bifurcations of a connected hyperbolic flow and saddle with hyperbolic-secant flow and source (sink) for the connected the separated hyperbolic and hyperbolic-secant flows. The inflection-sink and source infinite-equilibriums with parabola-saddles are presented for the switching bifurcations of a separated hyperbolic flow and saddle with a hyperbolic-secant flow and center.
Readers learn new concepts, theory, phenomena, and analysis techniques, such as Constant and product-cubic systems, Linear-univariate and product-cubic systems, Hyperbolic and hyperbolic-secant flows, Connected hyperbolic and hyperbolic-secant flows, Separated hyperbolic and hyperbolic-secant flows, Inflection-source (sink) Infinite-equilibriums and Infinite-equilibrium switching bifurcations.
Dr. Albert C. J. Luo is Distinguished Research Professor in the Department of Mechanical Engineering, Southern Illinois University Edwardsville, Edwardsville, IL.
Constant and Product-Cubic Systems.- Self-linear and Product-cubic systems.- Crossing-linear and Product-cubic systems.
Erscheinungsdatum | 13.09.2024 |
---|---|
Zusatzinfo | X, 250 p. 46 illus., 45 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Plasmaphysik |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Connected hyperbolic and hyperbolic-secant flows • Constant and product-cubic systems • Hyperbolic and hyperbolic-secant flows • Infinite-equilibrium switching bifurcations • Inflection-sinks and sources • Inflection-source (sink) Infinite-equilibriums I • Inflection-source (sink) Infinite-equilibriums I • Linear-univariate and product-cubic systems • Parabola-saddle bifurcations • Saddle-source (sink) bifurcations • Separated hyperbolic and hyperbolic-secant flows |
ISBN-10 | 3-031-57091-X / 303157091X |
ISBN-13 | 978-3-031-57091-9 / 9783031570919 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich