Handbook of Machine Learning Applications for Genomics -

Handbook of Machine Learning Applications for Genomics (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
X, 218 Seiten
Springer Nature Singapore (Verlag)
978-981-16-9158-4 (ISBN)
Systemvoraussetzungen
234,33 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as  DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a  tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians,  practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.



Sanjiban Sekhar Roy is an Associate Professor in the School of Computer Science and Engineering, Vellore Institute of Technology. He joined VIT  in the year 2009 as an Asst. Professor. His research interests include Deep Learning and advanced machine learning. He has published around 50 articles in a reputed international journal (with SCI impact factors) and conferences. He also is  editorial board members to a handful of international journals and reviewer to many highly reputed journals such as  Neural processing letters, Springer , IEEE Access: The Multidisciplinary Open Access Journal,  Computers & Security, Elsevier , International Journal of Advanced Intelligence Paradigms, Inderscience International publishers,  International Journal of Artificial Intelligence and Soft Computing, Inderscience International publishers,Ad Hoc Networks, Elsevier, Evolutionary Intelligence, Springer, Journal of Ambient Intelligence and Humanized Computing, Springer, Iranian Journal of Science and Technology, Transactions of Electrical Engineering, Springer. He uses Deep Learning techniques to solve many complex engineering problems, especially those are related to imagery. He is specialized in deep convolutional neural networks. Dr. Roy also has edited many books with reputed interntional publishers such as elsevier,springer and IGI Global. Very recently, Ministry of National Education, Romania in collaboration with 'Aurel Vlaicu' University Arad Faculty of Engineers, Romania has awarded Dr. Roy with 'Diploma of Excellence' as a sign of appreciation for the special achievements obtained in the scientific research activity in 2019.

Prof. Taguchi is currently a Professor at Department of Physics, Chuo University. Prof. Taguchi received a master degree in Statistical Physics from Tokyo Institute of Technology, Japan in 1986, and PhD degree in Non-linear Physics from Tokyo Institute of Technology, Tokyo, Japan in 1988. He worked at Tokyo Institute of Technology and Chuo University. He is with Chuo University (Tokyo, Japan) since 1997. He currently holds the Professor position at this university. His main research interests are in the area of Bioinformatics, especially, multi-omics data analysis using linear algebra. Dr. Taguchi has published a book on bioinformatics, more than 100 journal papers, book chapters and papers in conference proceedings.


Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as  DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a  tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians,  practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.
Erscheint lt. Verlag 23.6.2022
Reihe/Serie Studies in Big Data
Studies in Big Data
Zusatzinfo X, 218 p. 75 illus., 60 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik
Schlagworte convolutional neural network • Deep learning • DNA Methylation • DNA sequencing • gene clastering • Gene expression Prediction • gene prediction • genomics • machine learning • Medical Diagnosis
ISBN-10 981-16-9158-4 / 9811691584
ISBN-13 978-981-16-9158-4 / 9789811691584
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43