Geostatistical Functional Data Analysis (eBook)
448 Seiten
John Wiley & Sons (Verlag)
978-1-119-38790-9 (ISBN)
Explore the intersection between geostatistics and functional data analysis with this insightful new reference
Geostatistical Functional Data Analysis presents a unified approach to modelling functional data when spatial and spatio-temporal correlations are present. The Editors link together the wide research areas of geostatistics and functional data analysis to provide the reader with a new area called geostatistical functional data analysis that will bring new insights and new open questions to researchers coming from both scientific fields. This book provides a complete and up-to-date account to deal with functional data that is spatially correlated, but also includes the most innovative developments in different open avenues in this field.
Containing contributions from leading experts in the field, this practical guide provides readers with the necessary tools to employ and adapt classic statistical techniques to handle spatial regression. The book also includes:
* A thorough introduction to the spatial kriging methodology when working with functions
* A detailed exposition of more classical statistical techniques adapted to the functional case and extended to handle spatial correlations
* Practical discussions of ANOVA, regression, and clustering methods to explore spatial correlation in a collection of curves sampled in a region
* In-depth explorations of the similarities and differences between spatio-temporal data analysis and functional data analysis
Aimed at mathematicians, statisticians, postgraduate students, and researchers involved in the analysis of functional and spatial data, Geostatistical Functional Data Analysis will also prove to be a powerful addition to the libraries of geoscientists, environmental scientists, and economists seeking insightful new knowledge and questions at the interface of geostatistics and functional data analysis.
Jorge Mateu is Full Professor of Statistics at the Department of Mathematics of University Jaume I of Castellon. His research focuses on stochastic processes with a particular interest in spatial and spatio-temporal point processes and geostatistics. Ramón Giraldo is Full Professor of Statistics at the Department of Statistics at the Universidad Nacional de Colombia. His research focuses on non-parametric statistics, functional data analysis, and spatial and spatio-temporal geostatistics.
Preface
1. Introduction to Geostatistical Functional Data Analysis
2. Mathematical foundations of functional Kriging in Hilbert spaces and Riemannian manifolds
3. Universal, Residual and External Drift Functional Kriging
4. Extending functional kriging when data are multivariate curves : some technical considerations and
operational solutions
5. Geostatistical analysis in Bayes spaces: probability densities and compositional data
6. Spatial functional data analysis for probability density functions: compositional functional data vs
distributional data approach
7. Clustering spatial functional data
8. Nonparametric statistical analysis of spatially distributed functional data
9. A non parametric algorithm for spatially dependent functional data: Bagging Voronoi for clustering,
dimensional reduction and regression
10. Non-parametric inference for spatio-temporal data based on local null hypothesis testing for functional data
11. A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province
12. Quasi-Maximum Likelihood Estimators for Functional Linear Spatial Autoregressive Models
13. Spatial Prediction and Optimal Sampling for Multivariate Functional Random Fields
14. Spatio-temporal Functional Data Analysis
15. A comparison of spatio-temporal and functional kriging approaches
16. From spatio-temporal smoothing to functional spatial regression: a penalized approach
Index
Erscheint lt. Verlag | 16.11.2021 |
---|---|
Reihe/Serie | Wiley Series in Probability and Statistics |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Schlagworte | Angew. Wahrscheinlichkeitsrechn. u. Statistik / Modelle • Applied Probability & Statistics - Models • Datenanalyse • Environmental Science • Environmental Statistics & Environmetrics • Environmental Studies • Geostatistik • Statistics • Statistik • Umweltforschung • Umweltstatistik • Umweltstatistik u. Environmetrics • Umweltwissenschaften |
ISBN-10 | 1-119-38790-6 / 1119387906 |
ISBN-13 | 978-1-119-38790-9 / 9781119387909 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,9 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich