Machine Learning Acceleration for Tightly Energy-Constrained Devices
Seiten
2020
|
2020
Hartung-Gorre (Verlag)
978-3-86628-693-1 (ISBN)
Hartung-Gorre (Verlag)
978-3-86628-693-1 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Neural Networks have revolutionized the artificial intelligence and machine learning field in recent years, enabling human and even super-human performance on several challenging tasks in a plethora of different applications. Unfortunately, these networks have dozens of millions of parameters and need billions of complex floating-point operations, which does not fit the requirements of rising Internet-of-Things (IoT) end nodes. In this work, these challenges are tackled on three levels: Efficient design and implementation of embedded hardware, the design of existing low-power microcontrollers and their underlying instruction set architecture, and full-custom hardware accelerator design. Meanwhile, we are investigating novel algorithmic approaches of extreme quantization of neural networks, and analyze their performance and energy efficiency trade-off.
Erscheinungsdatum | 19.12.2020 |
---|---|
Reihe/Serie | Series in Microelectronics ; 240 |
Verlagsort | Konstanz |
Sprache | englisch |
Maße | 148 x 210 mm |
Gewicht | 350 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Elektrodynamik |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Schlagworte | full-custom hardware accelerator design • internet-of-things • low-power microcontrollers • machine learning • Tightly Energy-Constrained Devices |
ISBN-10 | 3-86628-693-7 / 3866286937 |
ISBN-13 | 978-3-86628-693-1 / 9783866286931 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
eine Einführung in die Gleich- und Wechselstromtechnik
Buch | Hardcover (2024)
Hanser (Verlag)
34,99 €
Grundlagen und praktische Anwendungen
Buch | Hardcover (2022)
Hanser (Verlag)
34,99 €