Production of Materials from Sustainable Biomass Resources -

Production of Materials from Sustainable Biomass Resources (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XVIII, 401 Seiten
Springer Singapore (Verlag)
978-981-13-3768-0 (ISBN)
Systemvoraussetzungen
171,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a collection of studies on state-of-art techniques developed specifically for lignocellulose component derivation, and for the production of functional materials, composite polymers, carbonaceous biocatalysts, and pellets from lignocellulosic biomass, with an emphasis on using sustainable chemistry and engineering to develop innovative materials and fuels for practical application.  Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. All chapters were contributed by respected experts in the field from around the globe, providing a broad range of perspectives on cutting-edge applications.

The book offers an ideal reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels and environmental engineering. It can also be used as a comprehensive reference source for university students in chemical engineering, material science and environmental engineering.




Zhen Fang is a professor and leader of the biomass group at Nanjing Agricultural University, as well as the inventor of the 'fast hydrolysis' process. He is listed in the 'Most Cited Chinese Researchers' in energy for 2014-2017 (Elsevier-Scopus). He specializes in the thermal/biochemical conversion of biomass, synthesis and applications of nanocatalysts, pretreatment of biomass for biorefineries, and supercritical fluid processes. He obtained his PhDs from China Agricultural University and McGill University. An associate editor for the journals Biotechnology for Biofuels and the Journal of Supercritical Fluids, he has more than 20 years of international research experience at top universities and institutes around the world, including one year in Spain (University of Zaragoza), three years in Japan (Tohoku University), and more than eight years in Canada (McGill). In addition, he worked seven years as an engineer in the areas of energy, bioresource utilization and engine design before switching to academia.

Richard L. Smith, Jr. is a professor of Chemical Engineering at the Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Professor Smith has a strong background in physical properties and separations, and obtained his PhD in chemical engineering from the Georgia Institute of Technology (USA). His research focuses on developing green chemical processes, especially those that use water and carbon dioxide as the solvents in their supercritical state. He has expertise in physical property measurements and in separation techniques with ionic liquids, and has published more than 200 scientific papers and reports in the field of chemical engineering. He is the Asia regional editor for the Journal of Supercritical Fluids and has served on the editorial boards of major international journals associated with properties and energy.

Xiaofei Tian is an associate professor at the School of Biology and Biological Engineering, South China University of Technology. Having obtained his PhD from the University of Chinese Academy of Sciences, his research focuses on solvent deconstruction and enzymatic saccharification of lignocelluloses for renewable cellulosic materials and biofuels. He also has experience in the development of fermentation techniques for functional fungal pigments. He has co-authored more than 30 research papers, reviews, and patents in his research specialty and has served as a peer-reviewer for major scientific journals.



This book presents a collection of studies on state-of-art techniques developed specifically for lignocellulose component derivation, and for the production of functional materials, composite polymers, carbonaceous biocatalysts, and pellets from lignocellulosic biomass, with an emphasis on using sustainable chemistry and engineering to develop innovative materials and fuels for practical application.  Technological strategies for the physical processing or biological conversion of biomass for material production are also presented. All chapters were contributed by respected experts in the field from around the globe, providing a broad range of perspectives on cutting-edge applications.The book offers an ideal reference guide for academic researchers and industrial engineers in the fields of natural renewable materials, biorefinery of lignocellulose, biofuels and environmental engineering. It can also be used as a comprehensive reference source for university students in chemical engineering, material science and environmental engineering.

Zhen Fang is a professor and leader of the biomass group at Nanjing Agricultural University, as well as the inventor of the “fast hydrolysis” process. He is listed in the “Most Cited Chinese Researchers” in energy for 2014-2017 (Elsevier-Scopus). He specializes in the thermal/biochemical conversion of biomass, synthesis and applications of nanocatalysts, pretreatment of biomass for biorefineries, and supercritical fluid processes. He obtained his PhDs from China Agricultural University and McGill University. An associate editor for the journals Biotechnology for Biofuels and the Journal of Supercritical Fluids, he has more than 20 years of international research experience at top universities and institutes around the world, including one year in Spain (University of Zaragoza), three years in Japan (Tohoku University), and more than eight years in Canada (McGill). In addition, he worked seven years as an engineer in the areas of energy, bioresource utilization and engine design before switching to academia.Richard L. Smith, Jr. is a professor of Chemical Engineering at the Graduate School of Environmental Studies, Research Center of Supercritical Fluid Technology, Tohoku University, Japan. Professor Smith has a strong background in physical properties and separations, and obtained his PhD in chemical engineering from the Georgia Institute of Technology (USA). His research focuses on developing green chemical processes, especially those that use water and carbon dioxide as the solvents in their supercritical state. He has expertise in physical property measurements and in separation techniques with ionic liquids, and has published more than 200 scientific papers and reports in the field of chemical engineering. He is the Asia regional editor for the Journal of Supercritical Fluids and has served on the editorial boards of major international journals associated with properties and energy.Xiaofei Tian is an associate professor at the School of Biology and Biological Engineering, South China University of Technology. Having obtained his PhD from the University of Chinese Academy of Sciences, his research focuses on solvent deconstruction and enzymatic saccharification of lignocelluloses for renewable cellulosic materials and biofuels. He also has experience in the development of fermentation techniques for functional fungal pigments. He has co-authored more than 30 research papers, reviews, and patents in his research specialty and has served as a peer-reviewer for major scientific journals.

Preface 6
Acknowledgments 9
Contents 11
Contributors 13
About the Editors 16
Part I: Isolation and Purification of Lignocellulose Components 18
Chapter 1: Isolation, Purification, and Potential Applications of Xylan 19
1.1 Introduction 19
1.2 Structure of Xylan 20
1.2.1 Homoxylan 21
1.2.2 Arabinoxylan (AX) 21
1.2.3 Glucuronoxylan (GX) 21
1.2.4 Arabinoglucuronoxylan (AGX) and Glucuroarabinoxylan (GAX) 23
1.3 Isolation of Xylan 23
1.3.1 Alkali Isolation 24
1.3.2 Organic Solvent Isolation 24
1.3.3 Steam Explosion 25
1.3.4 Hydrothermal (Autohydrolysis) 25
1.3.5 Microwave Irradiation 26
1.3.6 Ultrasonic Treatment 26
1.3.7 Subcritical or Supercritical Fluids 26
1.3.8 Ionic Liquid Extraction 27
1.3.9 Deep Eutectic Solvents Extraction 27
1.3.10 Twin-Screw Extruder 28
1.4 Purification of Xylan 28
1.4.1 Ethanol Precipitation 29
1.4.2 Ammonium Sulfate Precipitation 29
1.4.3 Iodide Complex Precipitation 30
1.4.4 Column Chromatography 30
1.4.5 Membrane Separation 31
1.4.6 Supercritical Anti-solvent Precipitation 31
1.5 Chemical Modification of Xylan 32
1.5.1 Esterification 32
1.5.2 Etherification 33
1.5.3 Oxidization 34
1.5.4 Other Chemical Modifications 34
1.6 Potential Applications of Xylan-Based Materials and Chemicals 36
1.6.1 Polymeric Films 36
1.6.2 Hydrogels 38
1.6.3 Nanoparticles 38
1.6.4 Bioconversion and Chemicals 39
1.7 Conclusions and Future Outlook 42
References 43
Part II: Composite Polymers Derived from Lignin and Cellulose 52
Chapter 2: Development of Lignin-Based Antioxidants for Polymers 53
2.1 Introduction 54
2.1.1 Polymers and Stabilization of Polymers 55
2.1.2 Lignin from Natural Sources 58
2.1.3 Lignin from Industrial Sources 59
2.1.4 Applications of Lignins in Polymer Blends 60
2.2 Lignin as an Antioxidant 61
2.2.1 Lignin as a Radical Scavenger 61
2.2.2 Application of Lignins as Antioxidants in Polyolefins 63
2.3 Lignin Modification and Applications of Modified Lignins as Antioxidant in Polyolefins 65
2.3.1 Lignin Modification Techniques 65
2.3.2 Application of De-polymerized Lignin as an Antioxidant in Polyolefins 66
2.3.2.1 Low-T/Low-P Lignin De-polymerization Process and Materials Characterization 66
2.3.2.2 Performance of De-polymerized Kraft Lignin or De-polymerized Hydrolysis Lignin as an Antioxidant in Polyolefins 67
2.4 Conclusions 69
References 70
Chapter 3: Nanocellulose Applications in Papermaking 74
3.1 Introduction 74
3.2 Nanocellulose 76
3.3 Use of Nanocelluloses in the Wet-End of Papermaking 77
3.3.1 Motivations to Add Nanocelluloses to the Papermaking Furnish 77
3.3.2 Challenges Associated with Use of MNFC in the Paper Machine 78
3.3.3 Apparent Density vs. MNFC Content of Paper 79
3.3.4 Strength Properties vs. MNFC Content of Paper 81
3.3.5 Permeability Properties vs. MNFC Content of Paper 83
3.3.6 Methods to Address Dewatering Challenges Associated with MNFC and CNC Usage 84
3.3.7 Methods to Monitor Retention Efficiency of MNFC 86
3.3.8 Possible Mechanism of Densification by MNFC 87
3.4 Nanocellulose Usage with Mineral Fillers in Papermaking 88
3.4.1 Mineral Fillers 89
3.4.2 Optical Properties of Fillers 89
3.4.3 Interactions of Nanocellulose with Mineral Fillers: Surface Charge 90
3.4.4 Interactions of MNFC with Mineral Fillers: Effect on Paper Properties 95
3.5 Applications of Nanocellulose on Paper Coatings 96
3.5.1 Paper Coatings 96
3.5.2 Effect of Nanocellulose on Rheology and Application of Coating Colors 97
3.5.3 Application of MNFC Using Different Coating Processes and its Effect on Paper Properties 98
3.5.4 Application of Coatings with Nanocellulose in Semi-industrial Operations 101
3.6 Conclusions and Future Outlook 104
References 105
Part III: Functional Materials Derived from Cellulose and Lignocelluloses 110
Chapter 4: Recent Advances in Cellulose Chemistry and Potential Applications 111
4.1 Introduction 111
4.2 Cellulose Structure and Modes of Derivatization 112
4.2.1 Homogeneous and Heterogeneous Derivatization 113
4.2.2 Degree of Substitution (DS) 114
4.3 Cellulose Intermediates 114
4.3.1 Cellulose Tosylate 114
4.3.2 Cellulose Carbonate 116
4.3.3 Amino Cellulose 117
4.4 Potential Applications 120
4.5 Carboxylated Cellulose Derivatives and Potential Applications 120
4.6 Dialdehyde Cellulose (DAC) Derivatives and Potential Applications 122
4.7 Zwitterionic Cellulose Derivatives 123
4.8 Conclusions and Future Outlook 123
References 124
Chapter 5: Production, Characterization and Alternative Applications of Biochar 128
5.1 Introduction 129
5.2 Production of Biochar 130
5.2.1 Pyrolysis 130
5.2.1.1 Pyrolysis of Lignocellulosic Components 131
5.2.1.2 Effect of Pyrolysis Process Parameters 132
5.2.2 Hydrothermal Carbonization 134
5.2.3 Activation 135
5.3 Characterization of Biochar 136
5.3.1 Elemental Composition and Ash Content 137
5.3.2 Biochar pH 138
5.3.3 Electrical Conductivity 138
5.3.4 Cation Exchange Capacity (CEC) 139
5.3.5 Surface Area and Pore Size Distribution 139
5.3.6 Morphology 140
5.3.7 Surface Elements 141
5.3.8 Surface Chemical Compounds and Functional Groups 142
5.3.9 Thermal Stability 142
5.3.10 Crystallinity 143
5.3.11 Bonding Structure/Aromaticity 143
5.4 Alternative Applications of Biochar 144
5.4.1 Applications in Environmental Remediation 144
5.4.1.1 Nutrients and Organic Contaminants 145
5.4.1.2 Heavy Metal Cations and Oxyanions 146
5.4.1.3 Capacitive Deionization 147
5.4.2 Sustainable Energy Applications 148
5.4.2.1 Supercapacitors 149
5.4.2.2 Batteries 149
5.4.2.3 Fuel Cells 150
5.4.3 Other Applications 151
5.4.3.1 Construction Materials 151
5.4.3.2 Electrochemical Sensors 151
5.4.3.3 Catalysts 152
5.5 Conclusions and Future Outlook 153
References 154
Chapter 6: Carbons from Biomass for Electrochemical Capacitors 163
6.1 Electrochemical Capacitors 163
6.2 Carbon Electrodes for EDLCs 165
6.3 ACs from Biomass 167
6.4 Carbons Nano-/Microspheres from Biomass 172
6.5 Carbon Fibers from Biomass 175
6.6 Carbon Nanotubes from Biomass 178
6.7 Carbon Nanosheets from Biomass 179
6.8 Relationships Between Carbon Structures and Electrode Properties 181
6.8.1 Pore Size and Pore Shape 182
6.8.2 Carbon Surface 183
6.8.3 Particle Size and Electrode Thickness 185
6.9 Conclusions and Future Outlook 186
References 187
Chapter 7: Carbonaceous Catalysts from Biomass 195
7.1 Introduction 195
7.2 Properties of Biomass Versus Other Carbon Sources 197
7.3 Synthesis of Carbonaceous Catalysts from Biomass 202
7.3.1 Transformation of Biomass to Char and AC 202
7.3.2 Tunability of Pore Sizes in AC 207
7.3.3 Surface Functionalisation and Deposition of Catalytic Components 207
7.4 Chemical Reactions Catalysed by Carbonaceous Catalysts 210
7.4.1 Carbon as a Catalyst Support 212
7.4.2 Carbon as a Carbocatalyst 215
7.4.3 Biomass Derived Carbocatalysts in Solid Acid Catalysis 217
7.4.4 Biomass Derived Catalysts for Gasification Application 220
7.4.5 Carbonaceous Catalysts for Electro-Fenton Oxidation 222
7.5 Conclusions and Future Outlook 226
References 227
Chapter 8: Synthesis and Design of Engineered Biochars as Electrode Materials in Energy Storage Systems 242
8.1 Introduction 243
8.1.1 Lithium-Ion Batteries 243
8.1.2 Graphite and Hard Carbon Electrodes 244
8.2 Engineered Biochars 245
8.2.1 Synthetic Strategies and Structural Features 246
8.2.1.1 Physical Modification 246
8.2.1.1.1 Pyrolysis 248
8.2.1.1.2 Hydrothermal Carbonization 249
8.2.1.2 Chemical Activation 251
8.2.1.3 Ion-Thermal Carbonization 252
8.2.1.4 Combined Methods to Form Doped or Composite Biochars 255
8.2.1.5 Applications According to Biochar Structure 257
8.2.2 Electrochemical Characteristics of Biomass-Based Electrodes 258
8.3 Conclusions and Future Outlook 269
References 270
Part IV: Biomass Pellets as Fuels 275
Chapter 9: Biomass Pelletization: Contribution to Renewable Power Generation Scenarios 276
9.1 Biomass: A Feedstock for Energy Generation 276
9.2 Research in Biomass Pelletization: Feedstocks and Additives 280
9.3 Industrial Pellet: Qualities and Use 282
9.4 Pellet Industry: Market and Trade Flows 287
9.5 Wood Pellets in the Power Industry 289
9.5.1 Case Studies in Wood Pellets Firing and Co-firing at Large Scale 291
9.5.2 Experiences with Torrefied Pellets 295
9.6 Conclusions and Future Outlook 295
References 296
Chapter 10: Biocarbon Production and Use as a Fuel 302
10.1 Introduction 303
10.2 Biocarbon Characterization as a Fuel 303
10.3 Applications of Biocarbon in the Steel Industry 305
10.3.1 Advantages of Biocarbon for the Steel Industry 306
10.3.2 Comparison of the Characteristics of Coke Breeze and Biocarbon 309
10.3.3 Reactivity Towards CO2 310
10.4 Combustion of Biocarbon in Small Devices 313
10.4.1 Emission Factors in Cookstoves 313
10.4.2 Emission Factors in Pellet Stoves and Boilers 315
10.4.3 Techno-economic Feasibility 318
10.4.4 Design of New Stoves and Boilers for Biocarbon 320
10.5 Kinetics of Combustion of Biocarbon 321
10.5.1 Biocarbon Combustion Kinetics 321
10.5.2 Biocarbon Burnout Time 323
10.5.3 Kinetics of Biocarbon and Coal Co-combustion 325
10.6 Conclusions and Future Outlook 327
References 328
Chapter 11: Mechanical Aspects and Applications of Pellets Prepared from Biomass Resources 332
11.1 Introduction 334
11.2 Raw Material Characteristics 336
11.2.1 Influence of Raw Material Composition 336
11.2.2 Influence of Raw Material Moisture Content 337
11.3 Binder Influence on Pelletization 339
11.3.1 Different Types of Binders 339
11.3.2 Bonding mechanism 340
11.4 Pre-treatment of Raw Materials 343
11.4.1 Pyrolysis, Torrefaction and Hydrothermal Carbonization 343
11.4.2 Steam Pre-treatment 344
11.5 Main Parameters Affecting the Pelletization Process 345
11.6 Modeling Flat Die and Ring Die Pelletizers 347
11.6.1 Modeling of Flat Die Pelletizer 347
11.6.2 Modeling of Ring Die Pelletizer 349
11.6.3 Modeling a Single Pelletization Channel 352
11.7 Applying Single Pellet Channel Model to Charcoal and Wood Pelletization 353
11.8 Conclusions 360
References 361
Part V: Biosynthesis of Polymers from Renewable Biomass 366
Chapter 12: Microbial Production and Properties of LA-based Polymers and Oligomers from Renewable Feedstock 367
12.1 Introduction 368
12.2 Biomass-Derived Biopolyesters: Polyhydroxyalkanoates (PHAs) and Polylactic Acid (PLA) 370
12.2.1 Polyhydroxyalkanoates (PHAs) 370
12.2.2 Polylactic Acid (PLA) 371
12.2.3 The First Microbial Factory of LA-Based Polymers 372
12.2.4 Production of LA-Based Polymers 373
12.2.4.1 Improvement of LA Fraction in P(LA-co-3HB) by Elimination of 3HB Supply 375
12.2.4.2 Production of P(LA-co-3HB) in Corynebacterium glutamicum 375
12.2.5 Latest Approaches to P(LA-co-3HB) Production 376
12.2.6 Application of Lignocellulosic Biomass for the Production of P(LA-co-3HB) 378
12.2.6.1 Use of Xylose for the Production of P(LA-co-3HB) 378
12.2.6.2 Use of Lignocellulosic Biomass Hydrolysates for the Production of P(LA-co-3HB) 380
12.3 Properties of LA-Based Polymers 382
12.3.1 Enantiomeric Purity of LA-Based Polymers 382
12.3.2 Sequential Structure and Molecular Weight of LA-Based Polymers 382
12.3.3 Thermal and Mechanical Properties of LA-Based Polymers 383
12.4 Microbial Degradation of P(LA-co-3HB) 384
12.5 Production of LA Oligomers 385
12.6 Conclusion and Future Outlook 388
References 390
Index 397

Erscheint lt. Verlag 4.4.2019
Reihe/Serie Biofuels and Biorefineries
Biofuels and Biorefineries
Zusatzinfo XVIII, 401 p. 121 illus., 47 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Technik Maschinenbau
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Carbonaceous catalysts • Energy Storage • fuel • Functional Materials • Nanocellulose
ISBN-10 981-13-3768-3 / 9811337683
ISBN-13 978-981-13-3768-0 / 9789811337680
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich