Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research - Chao Shang

Dynamic Modeling of Complex Industrial Processes: Data-driven Methods and Application Research

(Autor)

Buch | Softcover
143 Seiten
2019 | Softcover reprint of the original 1st ed. 2018
Springer Verlag, Singapore
978-981-13-3889-2 (ISBN)
106,99 inkl. MwSt
This thesis develops a systematic, data-based dynamic modeling framework for industrial processes in keeping with the slowness principle. Using said framework as a point of departure, it then proposes novel strategies for dealing with control monitoring and quality prediction problems in industrial production contexts.

The thesis reveals the slowly varying nature of industrial production processes under feedback control, and integrates it with process data analytics to offer powerful prior knowledge that gives rise to statistical methods tailored to industrial data. It addresses several issues of immediate interest in industrial practice, including process monitoring, control performance assessment and diagnosis, monitoring system design, and product quality prediction. In particular, it proposes a holistic and pragmatic design framework for industrial monitoring systems, which delivers effective elimination of false alarms, as well as intelligent self-running by fully utilizing the information underlying the data. One of the strengths of this thesis is its integration of insights from statistics, machine learning, control theory and engineering to provide a new scheme for industrial process modeling in the era of big data.



 

Introduction.- Concurrent monitoring of steady state and process dynamics with SFA.- Online monitoring and diagnosis of control performance with SFA and contribution plots.- Recursive SFA algorithm and adaptive monitoring system design.- Probabilistic SFR model and its applications in dynamic quality prediction.- Improved DPLS model with temporal smoothness and its applications in dynamic quality prediction.- Nonlinear and dynamic soft sensing model based on Bayesian framework.- Summary and open problems.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo 46 Illustrations, color; 13 Illustrations, black and white; XVIII, 143 p. 59 illus., 46 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Data-driven Methods • Fault Diagnosis • Industrial Process Control • Process Data Analytics • process monitoring • Soft Sensing
ISBN-10 981-13-3889-2 / 9811338892
ISBN-13 978-981-13-3889-2 / 9789811338892
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99