Research on the Radiation Effects and Compact Model of SiGe HBT - Yabin Sun

Research on the Radiation Effects and Compact Model of SiGe HBT

(Autor)

Buch | Softcover
168 Seiten
2019 | Softcover reprint of the original 1st ed. 2018
Springer Verlag, Singapore
978-981-13-5181-5 (ISBN)
128,39 inkl. MwSt
This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). It introduces the small-signal equivalent circuit of SiGe HBTs including the distributed effects, and proposes a novel direct analytical extraction technique based on non-linear rational function fitting. It also presents the total dose effects irradiated by gamma rays and heavy ions, as well as the single-event transient induced by pulse laser microbeams. It offers readers essential information on the irradiation effects technique and the SiGe HBTs model using that technique.

Dr. Yabin Sun received his bachelor's degree in Electronic Science and Technology from Jilin University, China in 2010, and his Ph.D in Microelectronics from Tsinghua University, China in 2015. His research focuses on the reliability, device model and parameters extraction of silicon-germanium (SiGe) heterojunction bipolar transistors (HBT). He was awarded the 20th Academic Rookie and Outstanding Ph.D dissertation at Tsinghua University in 2015. He received two consecutive national scholarships for graduate students (2013 and 2014) and was among the Outstanding Graduates of Beijing in 2015. In 2016, he joined the School of Information Science and Technology, East China Normal University, Shanghai, China. As first author, Dr. Sun has published 15 articles (12 in peer-reviewed journals and 3 international conference papers) in the past three years, as following: 1. Yabin Sun, Jun Fu, Jun Xu et.al, An improved small-signal model for SiGe HBT under OFF-state, derived from distributed network and model parameter extraction, IEEE Transaction on Microwave theory and Techniques, vol.63, No.10, 2015.2. Yabin Sun, Jun Fu, Ji Yang, Jun Xu, Yudong Wang et.al, Novel analytical parameters extraction for SiGe HBTs based on the rational function fitting, Superlattices and Microstructure, vol.80, pp.11-19, 2015.3. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al, Impact of bias conditions on performance degradation in SiGe HBTs irradiated by 10MeV Br ion, Microelectronics Reliability, vol.54, pp.2728-2734, 2014.4. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al, Bias Dependence of ionizing Radiation Damage in SiGe HBTs at Different Dose Rates, Physica B nol.434, pp.95–100, 2014.5. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, Wei Zhou et.al, Degradation differences in the forward and reverse current gain of 25MeV Si ion irradiated SiGe HBT, Physica B, vol.449, pp.186–192, 2014.6. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al, Investigation of bias dependence on enhanced low dose rate sensitivity in SiGe HBTs for space application, Nucl. Instrum. Methods A, vol.738, pp.82–86, 2014.7. Yabin Sun, Jun Fu, Jun Xu et.al, Irradiation Effects of 25MeV Silicon Ions on SiGe Heterojunction Bipolar Transistors. Nucl. Instrum. Methods B, vol.312, pp.77–83, 2013.8. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, Wei Zhou et.al, A Single-event transient induced by pulsed laser in silicon–germanium heterojunction bipolar transistor, Chin. Phys. B, vol. 22, no.5, pp. 056103, 2013.9. Yabin Sun, Jun Fu et.al, Comparison of total dose effects on SiGe HBT induced by different swift heavy ions irradiation for space application, Chin. Phys. B, 23(11), 116104, 2014.10. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, Wei Zhou et.al, Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model, Chin. Phys. B, 25(4), 048501, 201611. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al. The total-dose-effects of gamma and proton irradiations       on high-voltage SiGe HBTs, Radiation Effects & Defects in Solids, vol.168, no.4, pp.253-263, 2013.12. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, et.al, Study on ionization damage of silicon-germanium heterojunction bipolar transistors at various dose rates, Acta Phys. Sin. vol.62, no.19, 2013. 13. Yabin Sun, Jun Fu, Jun Xu et.al. The Reliability of SiGe HBT under Swift Heavy Ion Irradiation, 2013 IEEE International Conference on Electron Devices and Solid-State Circuits, HongKong14. Yabin Sun, Jun Fu, Jun Xu et.al, Novel method to determine base resistance in SiGe HBT HICUM based on rational function fitting, 2014 IEEE International Conference on Solid -States and Integrated Circuit Technology, Guilin, China15. Yabin Sun, Jun Fu, Jun Xu et.al, A Comparison of 10MeV Chlorine and 20MeV Bromine Ion Irradiation Effects on SiGe HBTs for Space Application. 2013 IEEE International Semiconductor Device Research Symposium16. Ji Yang, Jun Fu, Yabin Sun, Yudong Wang, et.al., Novel extraction of emitter resistance of SiGe HBTs from forward-Gummel measurements, 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, Chengdu, China, June 

Introduction.- Ionization damage in SiGe HBT.- Displacement damage with swift heavy ions in SiGe HBT.- Single-event transient induced by pulse laser microbeam in SiGe HBT.- Small-signal equivalent circuit of SiGe HBT based on the distributed effects.- Parameter extraction of SiGe HBT models.- Conclusion.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo 171 Illustrations, black and white; XXIV, 168 p. 171 illus.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Compact Model • Heavy Ion Radiation • Heterojunction Bipolar Transistor • Parameter Extraction • radiation effects • SiGe HBT • Silicon-Germanium
ISBN-10 981-13-5181-3 / 9811351813
ISBN-13 978-981-13-5181-5 / 9789811351815
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

Buch | Softcover (2023)
De Gruyter (Verlag)
54,95