Thermodynamics and Synchronization in Open Quantum Systems (eBook)

eBook Download: PDF
2018 | 1st ed. 2018
XXII, 411 Seiten
Springer International Publishing (Verlag)
978-3-319-93964-3 (ISBN)

Lese- und Medienproben

Thermodynamics and Synchronization in Open Quantum Systems - Gonzalo Manzano Paule
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book explores some of the connections between dissipative and quantum effects from a theoretical point of view. It focuses on three main topics: the relation between synchronization and quantum correlations, the thermodynamical properties of fluctuations, and the performance of quantum thermal machines. Dissipation effects have a profound impact on the behavior and properties of quantum systems, and the unavoidable interaction with the surrounding environment, with which systems continuously exchange information, energy, angular momentum and matter, is ultimately responsible for decoherence phenomena and the emergence of classical behavior. However, there is a wide intermediate regime in which the interplay between dissipative and quantum effects gives rise to a plethora of rich and striking phenomena that has just started to be understood. In addition, the recent breakthrough techniques in controlling and manipulating quantum systems in the laboratory have made this phenomenology accessible in experiments and potentially applicable.

Supervisors’ Foreword 6
Abstract 9
Acknowledgements 13
Contents 15
Acronyms 20
Part I Introduction to Open Quantum Systems and Quantum Thermodynamics 22
1 Basic Concepts 23
1.1 Quantum Mechanics 24
1.1.1 The Density Operator 25
1.1.2 Liouville–von Neumann Equation 27
1.1.3 Heisenberg and Interaction Pictures 28
1.1.4 The Microreversibility Principle 29
1.1.5 Composite Quantum Systems 31
1.1.6 Quantum Entropies 33
1.1.7 Distance Measures 36
1.2 Prototypical Systems 38
1.2.1 The Qubit System 39
1.2.2 Manipulation of Qubits by Classical Fields 42
1.2.3 The Harmonic Oscillator 43
1.2.4 Coherent States 46
1.2.5 Squeezed States 49
1.3 Quantum Measurement 53
1.3.1 Ideal Measurements 54
1.3.2 Generalized Measurements 56
1.3.3 Classes of Measurements 59
1.4 Classical and Quantum Correlations 64
1.4.1 Entanglement 64
1.4.2 Mutual Information 68
1.4.3 Quantum Discord 70
References 74
2 Open Quantum Systems Dynamics 79
2.1 Quantum Maps and Operations 80
2.1.1 Properties of CPTP Maps 83
2.1.2 Kraus Operator-Sum Representation 84
2.1.3 Environmental Models 85
2.1.4 Some Examples of CPTP Maps 87
2.2 Markovian Master Equations 89
2.2.1 The Lindblad Form 91
2.2.2 The Born–Markov Master Equation 92
2.3 Dissipative Qubits and Harmonic Oscillators 97
2.3.1 Qubit Relaxation in a Bosonic Environment 97
2.3.2 Bosonic Collisional Model 102
2.3.3 Quantum Brownian Motion 106
2.4 Open Many-Body Systems 111
2.4.1 Common Versus Independent Environmental Action 111
2.4.2 Coupled Dissipative Harmonic Oscillators 114
2.5 Quantum Trajectories 121
2.5.1 Continuous Measurements and Quantum Jumps 122
2.5.2 Stochastic Schrödinger Equation 125
2.5.3 Master Equation Unraveling 128
References 131
3 Quantum Thermodynamics 135
3.1 Principles of Thermodynamics 136
3.1.1 The First Law of Thermodynamics 138
3.1.2 The Second Law of Thermodynamics 140
3.1.3 Statistical Mechanics and Entropy 143
3.1.4 Helmholtz and Nonequilibrium Free Energy 145
3.1.5 The Third Law of Thermodynamics 147
3.1.6 Thermodynamics and Information 149
3.2 Fluctuation Theorems 151
3.2.1 Stochastic Thermodynamics 152
3.2.2 Classical Fluctuation Theorems 156
3.2.3 Quantum Fluctuation Theorems 161
3.3 Quantum Thermal Machines 168
3.3.1 Quantum Otto Cycle 169
3.3.2 Autonomous Thermal Machines 173
3.3.3 Quantum Effects in Thermal Machines 177
3.4 Other Topics in Quantum Thermodynamics 178
3.4.1 Equilibration and Thermalization 179
3.4.2 Resource Theories in Quantum Thermodynamics 182
References 186
Part II Quantum Synchronization Induced by Dissipation in Many-Body Systems 197
4 Transient Synchronization and Quantum Correlations 198
4.1 Synchronization Phenomena and Previous Works 199
4.2 Two Dissipative Harmonic Oscillators 200
4.3 Synchronization 203
4.4 Quantum Correlations 207
4.5 Dependence on Initial Conditions 209
4.6 Conclusions 211
References 217
5 Noiseless Subsystems and Synchronization 220
5.1 Prevention of Decoherence and Dissipation 221
5.2 Three Oscillators in a Common Environment 222
5.3 Noiseless Subsystems and Asymptotic Properties 224
5.3.1 Asymptotic Entanglement 228
5.3.2 Quantum Synchronization 233
5.4 Thermalization and Robustness of Quantum Correlations 235
5.4.1 Quantum Correlations 238
5.4.2 Synchronous Thermalization 240
5.5 Conclusions 241
References 248
6 Dissipative Complex Quantum Networks 251
6.1 Dissipation Mechanisms and Synchronization 252
6.2 Collective Synchronization by Tuning One Oscillator 257
6.2.1 Common Dissipation Bath 257
6.2.2 Local Dissipation Bath 260
6.3 Synchronization of Clusters and Linear Motifs 261
6.4 Entangling Two Oscillators Through a Network 264
6.5 Conclusions 265
References 270
Part III Quantum Fluctuation Theorems and Entropy Production 273
7 Fluctuation Theorems for Quantum Maps 274
7.1 Fluctuation Theorems, Unital Maps and Beyond 275
7.2 Quantum Operations and Dual-Reverse Dynamics 276
7.2.1 Quantum Trajectories and Unconditional States 277
7.2.2 Dual-Reverse Dynamics 278
7.3 Fluctuation Theorems 279
7.3.1 Nonequilibrium Potential and Detailed Balance 279
7.3.2 Fluctuation Theorem for a Single CPTP Map 281
7.3.3 Fluctuation Theorem for Concatenated Maps 284
7.4 Applications 285
7.4.1 Boundary Terms 285
7.4.2 Unital Work Relations 287
7.4.3 Thermalization and Heat 288
7.4.4 Generalized Gibbs-Preserving Maps 290
7.4.5 Lindblad Master Equations 293
7.5 Conclusion 297
References 298
8 Entropy Production Fluctuations in Quantum Processes 302
8.1 Quantum Operations and Entropy Production 303
8.1.1 The Process 303
8.1.2 Reduced Dynamics 305
8.1.3 Average Entropy Production 306
8.2 Backward Process and Fluctuation Theorem 308
8.3 Adiabatic and Non-adiabatic Entropy Production 311
8.3.1 The Dual-Reverse Process 312
8.3.2 The Dual Process 314
8.3.3 Second-Law-Like Equalities and Inequalities 315
8.3.4 Multipartite Environments 317
8.4 Concatenation of CPTP Maps 318
8.5 Lindblad Master Equations 322
8.6 Conclusions 328
References 329
9 Simple Applications of the Entropy Production FT's 332
9.1 Autonomous Quantum Thermal Machines 333
9.1.1 Quantum Trajectories and Entropy Production 335
9.2 Periodically Driven Cavity Mode at Resonance 341
9.2.1 Failure of the FT for Adiabatic Entropy Production 343
9.2.2 Implications to the Second-Law-Like Inequalities 344
9.3 Squeezing in a Maxwell Fridge Toy Model 347
9.3.1 Thermal Reservoirs Case 349
9.3.2 Squeezed Thermal Reservoir Enhancements 352
9.4 Conclusions 357
References 358
Part IV Quantum Thermal Machines 360
10 Thermodynamic Power of the Squeezed Thermal Reservoir 361
10.1 Thermodynamics of the Squeezed Thermal Reservoir 362
10.2 Extracting Work from a Single Reservoir 365
10.3 Heat Engine with a Squeezed Thermal Reservoir 366
10.3.1 Optimal Otto Cycle 366
10.3.2 Regimes of Operation 369
10.4 Squeezing as a Source of Free Energy 372
10.5 Experimental Realization 374
10.6 Conclusions 375
References 379
11 Performance of Autonomous Quantum Thermal Machines 382
11.1 The Primitive Operation 383
11.2 Warm-Up: Three-Level Machine 386
11.3 Multi-level Machines 388
11.4 Single-Cycle Machines 390
11.4.1 Optimal Single-Cycle Machine 391
11.5 Multi-cycle Machines 394
11.6 Concatenated Three-Level Machines 396
11.7 Third Law 399
11.8 Statics Versus Dynamics for Single-Cycle Machines 400
11.9 Conclusions 401
References 412
Part V Conclusions 413
12 Summary and Outlook 414
12.1 Quantum Synchronization Induced by Dissipation in Many-Body Systems 414
12.2 Quantum Fluctuation Theorems and Entropy Production 417
12.3 Quantum Thermal Machines 420
References 422

Erscheint lt. Verlag 4.7.2018
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XXII, 411 p. 76 illus., 30 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Thermodynamik
Schlagworte Autonomous Thermal Machines • Decoherence-free Subspaces • Fluctuation Theorems • Non-thermal Reservoir • Open Quantum Systems • Quantum Correlations • Quantum Heat Engines • Quantum Synchronization • quantum thermodynamics • Squeezed Thermal Reservoir
ISBN-10 3-319-93964-5 / 3319939645
ISBN-13 978-3-319-93964-3 / 9783319939643
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 17,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich