Adaptive Filtering Primer with MATLAB - Alexander D. Poularikas, Zayed M. Ramadan

Adaptive Filtering Primer with MATLAB

Buch | Hardcover
238 Seiten
2017
CRC Press (Verlag)
978-1-138-41793-9 (ISBN)
229,95 inkl. MwSt
Explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. This book introduces discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm.
Because of the wide use of adaptive filtering in digital signal processing and, because most of the modern electronic devices include some type of an adaptive filter, a text that brings forth the fundamentals of this field was necessary. The material and the principles presented in this book are easily accessible to engineers, scientists, and students who would like to learn the fundamentals of this field and have a background at the bachelor level.

Adaptive Filtering Primer with MATLAB clearly explains the fundamentals of adaptive filtering supported by numerous examples and computer simulations. The authors introduce discrete-time signal processing, random variables and stochastic processes, the Wiener filter, properties of the error surface, the steepest descent method, and the least mean square (LMS) algorithm. They also supply many MATLAB functions and m-files along with computer experiments to illustrate how to apply the concepts to real-world problems. The book includes problems along with hints, suggestions, and solutions for solving them. An appendix on matrix computations completes the self-contained coverage.

With applications across a wide range of areas, including radar, communications, control, medical instrumentation, and seismology, Adaptive Filtering Primer with MATLAB is an ideal companion for quick reference and a perfect, concise introduction to the field.

Alexander D. Poularikas, Zayed M. Ramadan

Introduction. Discrete-Time Signal Processing. Random Variables, Sequences, and Stochastic Processes. Wiener Filters. Eigenvalues of Rx - Properties of the Error Surface. Newton and Steepest-Descent Method. The Least Mean-Square (LMS) Algorithm. Variations of LMS Algorithms. Least Squares and Recursive Least-Squares Signal Processing. Abbreviations. Bibliography. Appendix A: Matrix Analysis. Index.

Erscheinungsdatum
Reihe/Serie Electrical Engineering Primer Series
Verlagsort London
Sprache englisch
Maße 152 x 229 mm
Gewicht 453 g
Themenwelt Naturwissenschaften Physik / Astronomie Optik
Technik Elektrotechnik / Energietechnik
Technik Nachrichtentechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 1-138-41793-9 / 1138417939
ISBN-13 978-1-138-41793-9 / 9781138417939
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen - Verfahren - Anwendungen - Beispiele

von Jens Bliedtner

Buch | Hardcover (2022)
Hanser, Carl (Verlag)
49,99

von Eugene Hecht

Buch | Hardcover (2023)
De Gruyter Oldenbourg (Verlag)
114,95