Chemical Rocket Propulsion (eBook)
XX, 1084 Seiten
Springer International Publishing (Verlag)
978-3-319-27748-6 (ISBN)
Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal.
Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space.It will be of interest to both postgraduate and final-year undergraduate students in aerospace engineering, and practicing aeronautical engineers and designers, especially those with an interest in propulsion, as well as researchers in energetic materials.
Preface 6
Contents 12
Short Biography 18
Part I An Introduction to Energetic Materials for Propulsion 22
An Introduction to Energetic Materials for Propulsion 23
Nomenclature 24
1 Background and Volume Introduction 26
1.1 Sections of This Chapter 27
2 New Ingredients for Chemical Propulsion 28
2.1 Full Papers of This Part 30
3 Metals as Energetic Fuels for Chemical Propulsion 31
3.1 Full Papers of This Part 33
4 Solid Rocket Propellant Formulation 33
4.1 Full Papers of This Part 37
5 Liquid Rocket Propulsion 38
5.1 Full Papers of This Part 41
6 Hybrid Rocket Propulsion 42
6.1 Full Papers of This Part 43
7 New Concepts in Chemical Propulsion 44
7.1 Advanced Energetic Materials 44
7.2 Innovation of Energetic Materials by Materials Genome Initiative 46
7.2.1 Conception and Significance 46
7.2.2 A Tentative Plan of EMGI Development 48
7.3 Surface Engineering of Energetic Materials by Atomic Layer Deposition 49
7.4 Energetic Ionic Liquids for Space Propulsion 52
7.5 Catalysts in Chemical Propulsion 55
7.6 High-Performance/Low-Cost Solid Rocket Motors 58
7.7 Space Commercialization 58
7.8 Full Papers of This Part 59
8 Life-Cycle Management of Energetic Materials 60
8.1 Full Papers of This Part 61
9 Rocket Propulsion Systems 63
9.1 Launch Vehicle Propulsion 63
9.2 Solid Rocket Motor (SRM) Systems 66
9.3 Full Papers of This Part 67
10 Applications of Energetic Materials 67
10.1 Full Papers of This Part 68
11 History of Solid Rocket Propulsion in Russia 69
11.1 Full Papers of This Part 71
12 Gels for Rocket and Ramjet Propulsion 72
12.1 Full Papers 74
References 74
Part II New Ingredients for Chemical Propulsion 80
Synthesis of New Oxidizers for Potential Use in Chemical Rocket Propulsion 81
1 Solid Rocket Propellants 81
2 Ammonium Perchlorate: Uses and Hazards 83
3 Requirements, Strategy Development, and Building Blocks for the Design of New Oxidizers 84
4 Synthesized Materials 87
4.1 Orthocarbonates [25, 38] 88
4.2 2,5-Disubstituted Tetrazoles [29] 91
4.3 Bi-1,2,4-Oxadiazoles [21] 94
4.4 Carbamates and Nitrocarbamates [28] 96
4.5 2,2,2-Trinitroethyl Carbamate and -Nitrocarbamate [23] 99
5 Summary, Conclusions, and Continuing Investigations 101
References 103
High-Nitrogen Energetic Materials of 1,2,4,5-Tetrazine Family: Thermal and Combustion Behaviors 107
1 Introduction 107
2 General Schemes of Synthesis of Substituted s-Tetrazines 109
3 Energetic Materials Based on CHN-Tetrazines 110
4 Energetic Materials Based on CHN-Tetrazines Annulated with Azoles 119
5 Energetic Materials Based on CHNO-Tetrazines 124
6 Salts of Substituted Tetrazines with Oxidizing Acids 132
7 Coordination Compounds of Tetrazine 136
8 Conclusions 139
References 140
Survey of New Energetic and Eco-friendly Materials for Propulsion of Space Vehicles 144
Nomenclature 144
1 Introduction 146
2 Powerful Oxidizers 146
3 Energetic Binders 149
4 Energetic Plasticizers 150
5 Energetic Additives 151
6 Conclusions 153
References 154
Performance Additives for Hybrid Rockets 156
Nomenclature 156
1 Identification of the Important Fuel Properties 157
1.1 Advantages and Disadvantages of Using Performance Additives 157
1.1.1 Critical Properties of Fuels with Performance Additives 158
2 Identification of Candidate Materials 159
2.1 Oxidizers 159
2.2 Performance Additives 160
2.3 Fuel Binders 160
3 Literature Search: Hybrid Rocket Fuel Additives 161
4 Thermochemical Calculations 169
4.1 Results 169
4.1.1 Effect of Additive Type 170
4.1.2 Effect of Binder Type 173
4.1.3 Combustion Temperature 174
4.1.4 Two-Phase Losses and Nozzle Erosion Effect 174
4.1.5 Fuel Cost 175
4.1.6 Effect on Regression Rate 175
5 Ranking of Fuel Additives and Binders 175
6 Recommendations for Further Evaluation 177
7 Example Case 178
8 Conclusions 178
References 179
Introducing Tetrazole Salts as Energetic Ingredients for Rocket Propulsion 181
Nomenclature 181
Acronyms 181
Roman Symbols 182
Greek Symbols 183
1 Introduction 183
2 Hydroxylammonium 2-Dinitromethyl-5-Nitrotetrazolate (HADNMNT) 183
2.1 Synthesis and Characterization 183
2.2 Physical and Chemical Properties 185
2.3 Theoretical Ideal Performance of Composite Propellant Containing HADNMNT 186
3 Dihydroxylammonium 5,5-Bistetrazole-1,1-Diolate (HATO) 187
3.1 Synthesis 188
3.2 Safety Tests 188
3.3 Compatibility 189
3.4 Theoretical Performance of Composite Propellant Containing HATO 189
3.5 Comparative Study of HATO and RDX as Ingredient for Composite Propellant 190
References 192
Synthesis and Characterization of 3,4-bis(3-fluorodinitromethylfurazan-4-oxy)furazan 194
1 Introduction 194
2 Experimental Section 196
2.1 Instruments and Conditions 196
2.2 Synthesis 196
3 Results and Discussion 197
3.1 Reaction Process 197
3.2 Spectroscopy 197
3.3 Thermal Analysis 199
3.4 Energetic Properties 199
4 Conclusions 200
References 201
Part III Metals as Energetic Fuels for Chemical Propulsion 203
Prospects of Aluminum Modifications as Energetic Fuels in Chemical Rocket Propulsion 204
Nomenclature 205
1 Background 206
2 Thermochemical Properties 208
2.1 Metal Fuels 209
2.2 Ideal Computed Performance 210
3 nAl Powders 213
3.1 Production and Characterization 213
3.2 Electron Microscopy Analyses 214
3.3 Physical Analyses 215
3.4 Suspension Rheology and nAl Dispersion 216
3.5 nAl Burning in Solid Propellants 217
3.6 Agglomeration Process 218
3.7 Nomenclature for Cohesion, Aggregation, and Agglomeration 220
3.8 Comparative Combustion Testing of Al vs. nAl Formulations 221
3.9 Fast Depressurization 222
3.10 Pressure Deflagration Limit (PDL) 222
3.11 Subatmospheric Burning 225
3.12 Laser Radiation Ignition 225
3.13 nAl Summary 226
4 Activated Al Powders 227
4.1 Chemical Activation 227
4.2 Mechanical Activation 228
4.3 Effects of Activation Processes on Powder Reactivity 230
4.4 Potentialities of Activated Al Powders in Solid Rocket Propellants 231
5 MgB Dual-Metal Powders 233
6 Comparing Different Metal Powders 237
6.1 Ballistic Properties 237
7 Concluding Remarks 239
References 242
Novel Micro- and Nanofuels: Production, Characterization, and Applications for High-Energy Materials 247
Acronyms 248
1 Introduction 248
2 Results and Discussion 250
2.1 Nanoaluminum (nAl) 250
2.1.1 Technology of Production by the Method of Electric Explosion of Wire 250
2.1.2 Nanopowder Particle Size Distribution Analysis 251
2.1.3 Nanopowder Chemical Passivation 253
2.1.4 Microencapsulation of nAl Powders 255
2.2 Microborides 258
3 Conclusion 261
References 262
Combustion Behavior of Aluminum Particles in ADN/GAP Composite Propellants 264
1 Introduction 265
2 Experimental 267
2.1 Tested Formulation 267
2.2 Experimental Setup 268
2.3 Measurement Techniques and Data Evaluation 268
3 Results and Discussion 269
3.1 Visible Observations and Burning Rate 269
3.2 Spectroscopic Investigations and Temperature 270
3.3 Agglomeration 275
3.4 SEM/EDX Analysis of Collected Particles 276
4 Conclusion 280
References 280
Laser Ignition of Different Aluminum Nanopowders for Solid Rocket Propulsion 282
1 Introduction 282
2 Experimental 284
2.1 Preparation of Coated with Oleic Acid (nAl@OA) 284
2.2 Aluminum Nanopowders Coated with Perfluorotetradecanoic Acid (nAl@PA) 284
2.3 Aluminum Nanopowders Coated with Nickel Acetylacetonate (nAl@NA) 285
2.4 Preparation of Composite Solid Propellant Samples 285
2.5 Characterizations 286
2.6 Equipment Methods and Test Conditions 286
2.6.1 Laser Ignition Characteristics 286
2.6.2 Combustion Characteristics 286
2.6.3 Burning Rate Test Method 286
2.6.4 Burning Flame Profiles Test Method 288
2.6.5 Combustion Wave Test Method 288
3 Results and Discussion 288
3.1 SEM-EDS Analysis 288
3.2 XRD Analysis 290
3.3 FTIR Analysis 290
3.4 Laser Ignition Characteristics 293
3.4.1 Ignition Studies of Different Aluminum Nanopowders Under Different Heat Flux 293
3.4.2 Laser Ignition Process of Different Aluminum Nanopowders 294
3.5 Combustion Process of Different Aluminum Nanopowders 296
3.6 Burning Rate and Pressure Exponent of Propellant 297
3.7 Combustion Flame Profiles of Propellant 299
3.8 Combustion Wave Structure and Flame Temperature Distribution of Propellant 300
4 Conclusions 303
References 304
Experimental Investigation of an Aluminized Gel Fuel Ramjet Combustor 307
Nomenclature 307
Acronyms 307
Symbols 308
Subscripts 308
1 Introduction 308
2 Experimental System 310
2.1 Hot Air Supply System 310
2.2 Gel Fuel Supply System 312
2.3 Ignition System 312
2.4 Data Acquisition System 313
2.5 Lab-Scale Ramjet Motor 313
2.6 Gel Fuels 313
3 Results and Discussion 314
3.1 Non-metalized Fuels 315
3.2 Aluminized Fuels 317
4 Conclusion 324
References 324
Part IV Solid Rocket Propulsion 326
Formulation Factors and Properties of Condensed Combustion Products 327
Nomenclature 327
1 Introduction 328
2 Physical Picture of Formation of CCP at the Surface of the Burning Propellant 329
2.1 Formation of Agglomerates 329
2.2 Formation of Smoke Oxide Particles 333
3 Influence of Various Factors on Properties of CCP 335
3.1 Kind and Size of Oxidizer 335
3.1.1 Oxidizer Particles Keep Individuality 335
3.1.2 Particles of an Oxidizer Do Not Retain Individuality 336
3.2 Type of Binder 337
3.3 Kind and Size of Metal Particles 339
3.3.1 Use of Nano-Sized Aluminum 339
3.3.2 Use of Modified Aluminum 342
4 Summary 345
References 345
Energy and Combustion Characteristics of Propellants Based on BAMO-GAP Copolymer 348
1 Introduction 349
2 Experimental 349
2.1 Materials and Specimen 349
2.2 Equipment and Experimentation 350
3 The Energetic Properties of Series Propellants Based on p(BAMO-GAP) 351
3.1 Energetic Performance of Different Materials 351
3.2 Energetic Performance of Propellants Containing Different Energetic Plasticizers 352
3.3 Effect of Single Oxidant on the Energetic Characteristics of Propellants 352
3.4 Effect of Dual Oxidants on the Energetic Characteristics of Propellants 354
3.5 High Energy Propellants Based on p(BAMO-GAP) 357
4 Combustion Characteristics of p(BAMO-GAP)/RDX/Al Propellants 359
4.1 Burning Rate and Pressure Exponent 359
4.1.1 Effect of RDX 359
4.1.2 Effect of Al 361
4.1.3 Effect of Catalysts 362
4.2 Combustion Flame Structures of p(BAMO-GAP)/RDX/Al/Ct Propellants 363
4.3 Adiabatic Flame Temperatures of p(BAMO-GAP)/RDX/Al Propellants 366
5 Conclusions 368
References 368
Synergistic Effect of Ammonium Perchlorate on HMX: From Thermal Analysis to Combustion 371
Nomenclature 372
1 Introduction 372
2 Materials and Methods 373
2.1 Materials 373
2.2 Microstructure 374
2.3 Thermal Analysis 374
2.4 Combustion Experiments 374
3 Results and Discussion 374
3.1 Microstructure 374
3.2 Thermal Analysis 375
3.2.1 General Remarks 375
3.2.2 Two “Scenarios” of HMX/AP Mixture Decomposition 377
3.2.3 Onset Decomposition Temperature 379
3.2.4 HMX Phase Transition 380
3.2.5 AP Phase Transition 381
3.2.6 Gaseous Products at Maximum Decomposition Rate 382
3.3 Combustion Parameters 383
4 Summary 384
References 386
Combustion of Solid Propellants with Energetic Binders 388
Nomenclature 388
Greek Symbols 389
Acronyms 390
Subscripts and Superscripts 390
1 Introduction 390
2 Effect of Curvature of Burning Surface on Burning Rate 391
3 Critical Diameter of Combustion 395
4 Combustion Model for Binary Mixtures with Energetic Binder 396
5 Temperature Sensitivity of Propellant Burning Rate 399
6 Conclusion 404
References 405
Effects of Dual Oxidizers on the Properties of Composite Solid Rocket Propellants 407
Nomenclature 408
Acronyms 408
Roman Symbols 408
Greek Symbols 409
1 Introduction 409
2 Experimental 410
2.1 Ingredients and Formulations 410
2.2 Preparation of Propellants 411
2.3 Characterization Methods of Ingredients and Propellants 411
2.3.1 SEM and Particle Size Distribution Experiments 411
2.3.2 Heat of Explosion Test 411
2.3.3 Density Test 412
2.3.4 Hazard Property Test 412
2.3.5 Burning Rate Test 412
2.3.6 Thermal Decomposition Analysis 413
2.3.7 Mechanical Properties 413
3 Results and Discussion 413
3.1 Microstructures and Granular Distribution Characteristics of Tested Oxidizers 413
3.2 Thermochemical and Hazard Properties of Tested Propellants 416
3.2.1 Calculated Ideal Properties 416
3.2.2 Hazard Properties 417
3.3 Thermal Analysis of Oxidizers and Propellants 418
3.4 Burning Rate and Pressure Exponent 421
3.5 Mechanical Properties of Dual-Oxidizer Propellants 423
4 Conclusions 425
References 426
Part V Liquid and Gel Rocket Propulsion 428
Russian Engine Technologies 429
1 Launch Systems 429
2 The Russian Moon Race 430
2.1 Korolev's N-1 Rocket 430
2.2 Chelomei's Universal Rocket Concept UR-500 and UR-700 433
2.2.1 UR-500 433
2.2.2 UR-700 433
2.3 Yangel's R-56 434
3 Energiya/Buran 437
4 Rocket Engines 437
4.1 Engine System 438
4.2 Thrust Chamber Cooling 443
4.3 Injection 446
4.4 Ignition 451
4.5 Gas Generators 453
4.6 Turbopumps 456
References 463
The Status of the Research and Development of LNG Rocket Engines in Japan 465
1 Japanese LNG Engines 465
1.1 LE-8 Engine (100 kN-Class Engine) 467
1.1.1 Engine Specification 467
1.1.2 Component Design 467
1.2 30 kN-Class Engine 472
1.2.1 Engine Specification 472
1.2.2 Component Design 472
1.2.3 Firing Test Results 473
1.3 100 kN-Class Regenerative Cooling Engine (IHI In-House Engine) 475
1.3.1 Engine Specification 475
1.3.2 Component Design 476
1.3.3 Firing Test Results 477
2 Next Step of the Research 478
3 R& D Plan for LNG Engines in Japan
3.1 Approach of the R& D
3.2 Setting a Target Performance (Is) for the R& D Activity
3.3 Setting of Element Technical Level to Achieve the Target 483
3.3.1 Selecting the Engine Cycle 483
3.3.2 Determine Operating Conditions 484
3.4 Finding Out the Task, Research Plan Outline 486
3.4.1 Find a Best Design of Injection Element 486
3.4.2 Verification of Heat Exchange Performance 486
3.4.3 Survey a Better Ignition Condition of Pre-burner 487
3.4.4 Influence of Soot of Combustion Gas 487
3.5 Improvement on Design Method 487
4 Summary 488
References 488
Research and Development Activities on JAXA's Spacecraft Propulsion 490
1 History and Introduction 490
2 Recent Spacecraft Projects 491
2.1 GCOM-W (SHIZUKU) 491
2.2 ALOS-2 (DAICHI-2) 493
2.3 SELENE (KAGUYA) 494
2.4 HTV (KOUNOTORI) 496
2.5 Future Mission 497
3 Research and Development Activities 497
3.1 Development of Long Life and High-Reliability 1 N and 4 N Monopropellant Thrusters 498
3.1.1 General Description of Long Life and High-Reliability 1 N Thrusters 499
3.1.2 General Description of Long Life and High-Reliability 4 N Thrusters 501
3.1.3 Contents of Endurance Firing Test 502
3.1.4 The Life Prediction Model of 1 N and 4 N Monopropellant Thrusters 506
3.1.5 The Process to Construct a Life Prediction Model of Monopropellant Hydrazine Thrusters 507
3.1.6 The Results of Constructing a Life Prediction Model of Monopropellant Hydrazine Thrusters 508
3.2 Development of New Satellite Composite Propellant Tank 509
3.2.1 Tank Specifications and Configuration 510
3.2.2 Development Status and Future Work 511
3.3 Research of High-Performance and Low-Toxic Propellants 513
3.3.1 Evaluation of Propellants 513
3.3.2 Thruster Design 514
3.4 System Study 515
3.5 Future Works 516
4 Conclusion 516
References 517
High Shear Rheometry of Unsymmetrical Dimethylhydrazine Gel 519
Nomenclature 520
1 Introduction 521
2 Formulation of Gel Propellants 522
3 Performance Evaluation 524
4 Ignition and Combustion 529
5 Rheological Behavior 531
5.1 Gel Characterization at Low Shear Rate 532
5.2 High Shear Rheometry 534
6 Conclusions 539
References 541
Part VI Hybrid Rocket Propulsion 543
Hybrid Propulsion Technology Development in Japanfor Economic Space Launch 544
1 Introduction 545
2 Assessment of Conformity of Chemical Propulsions to Economic Dedicated Launcher 546
2.1 Mission and System Requirements and Constraints Imposed 546
2.2 Assessment of Propulsion Subsystems 547
2.2.1 Performance 547
2.2.2 Safety 548
2.2.3 Environmental Impact 548
2.2.4 Quality Assurance and Quality Control 549
2.2.5 Cost 549
2.2.6 Summary of Assessment 549
3 Conceptual Study on Lightweight Satellite Launcher Using Hybrid Propulsion 550
3.1 Conceptual Design of Three-Stage Launcher for Space Transportation 550
4 Hybrid Propulsion Technologies 552
4.1 Swirling-Oxidizer-Flow-Type Hybrid Rocket and LO2 Vaporization Technology 553
4.1.1 Features of Swirling-Oxidizer-Flow-Type Hybrid Rocket Engine 553
4.1.2 Overall and Local Fuel Regression Rates 554
4.1.3 Fuel Regression Rate Controlling Parameters 556
4.1.4 Large Demonstration Engine 557
4.1.5 LO2 Vaporization Technology 558
4.2 Multi-section Swirl Injection Method 560
4.3 Low-Melting-Point Thermoplastic Fuel (LT Fuel) 562
4.4 Thrust and O/F Control of Hybrid Rocket 564
4.5 Numerical Simulation of Hybrid Rocket Internal Ballistics 565
4.5.1 Large-Eddy Simulation in Combustion Chamber of SOFT-HR [50] 565
4.5.2 One-Dimensional Analysis for Hybrid Rocket Internal Ballistics [52] 568
4.6 Diagnostic Technologies of Hybrid Rocket Combustion 569
4.6.1 Combustion Visualization 569
5 Conclusion 570
References 571
Internal Flow Characteristics and Low-Frequency Instability in Hybrid Rocket Combustion 575
1 Basic Features of Internal Flows 576
2 Numerical Methodology 578
3 Results 580
3.1 Adjustment of Boundary Layer to Wall Blowing 580
3.2 Formation of Parietal Vortices 581
3.3 Modification of Flow Characteristics Upon Inserting a Diaphragm 583
4 Non-acoustic Low-Frequency Instability 586
4.1 Baseline Results 588
4.2 Pressure Curves and Spectral Data in Tests 2 and 3 590
4.2.1 Controlling Oxidizer Mass Flow Rate and Solid Fuel 592
4.2.2 Fuel Regression vs. LFI Initiation 594
4.2.3 Vortex Shedding Over Backward-Facing Step 596
4.2.4 Effect of Combustion Pressure 598
5 Conclusions 600
References 601
Performance Analysis of Paraffin Fuels for Hybrid Rocket Engines 602
1 Introduction 602
2 Energy Performance Calculations 604
2.1 The Calculation Scheme 604
2.2 Calculation Results and Analysis 604
2.3 The Application Prospect Analysis of Paraffin with Different Oxidizer Combinations 605
3 Thermal Characteristic Experiment 606
3.1 The Experimental Scheme 607
3.2 TG Experimental Analysis 607
3.3 DSC Experimental Analysis 608
3.4 DSC Thermal Analysis of Pretreated Paraffin Under Different Heating Rates 608
4 Fuel Melting Characteristic Experiment 610
4.1 The Experimental Scheme 610
4.2 Experimental Result Analysis 610
5 Fuel Regression Rate Experiment 611
5.1 Experimental Scheme 612
5.2 Experimental Result Analysis 612
5.2.1 Experimental Reproducibility Analysis 612
5.2.2 Oxygen Mass Flow Rate Impact on Fuel's Regression Rate 613
5.2.3 The Relationship Between Oxygen Mass Flow Rate and Fuel's Regression Rate 615
6 The Internal Flow Field Numerical Simulation of Hybrid Rocket Engine 616
6.1 The Simulation Model 616
6.2 The Simulation Scheme 616
6.3 The Simulation Results and Analysis 617
7 Conclusion 621
References 621
Hybrid Combustion Studies on Regression Rate Enhancement and Transient Ballistic Response 623
Nomenclature 623
Subscripts 624
Abbreviations 624
1 Introduction 625
2 State of the Art 625
3 Ingredients Characterization 626
3.1 Thermal Characterization 627
3.2 Rheological Characterization 630
3.3 Mechanical Characterization 632
4 Experimental Results and Discussions 632
4.1 Ballistics Under Quasi-steady Conditions 633
4.1.1 The 2D Radial Microburner and the Time-Resolved rf 633
4.1.2 The Lab-Scale Hybrid Test Facility and the Fiber Optic Sensors 636
4.1.3 Swirl Injection and rf Sensor 638
4.2 Ballistics Under Forced Transient Conditions 639
5 Conclusions and Future Developments 643
References 645
Part VII New Concepts in Chemical Propulsion 648
In-Space Chemical Propulsion System Roadmap 649
Nomenclature 650
1 Introduction 651
2 General Overview 654
2.1 Technical Approach 654
2.2 Benefits 654
2.3 Applicability/Traceability to NASA Strategic Goals, AMPM, DRMs, and DRAs 655
2.4 Top Technical Challenges 655
3 Detailed Portfolio Discussion 656
3.1 Chemical Propulsion 658
3.1.1 Monopropellants 658
3.1.2 Bipropellants 660
3.2 High-Energy Oxidizers 660
3.2.1 Challenges 660
3.2.2 Milestones to TRL 6 661
3.3 Liquid Cryogenic Propellants 661
3.3.1 Oxygen/Methane Propulsion 661
3.3.2 Challenges 661
3.3.3 Milestones to TRL 6 661
3.4 Advanced (TRL < 3) Propulsion Technologies
3.4.1 Metallic Hydrogen 661
3.4.2 Challenges 662
3.4.3 TRL Maturation Plan 662
3.4.4 Atomic Boron/Carbon/Hydrogen 662
3.4.5 Challenges 662
3.4.6 TRL Maturation Plan 662
3.4.7 High-Nitrogen Compounds (N4, N5+) 663
3.4.8 Challenges 663
3.4.9 TRL Maturation Plan 663
4 Dawn of Space Commercialization 663
References 665
Mapping of Aluminum Particle Dispersion in Solid Rocket Fuel Formulations 666
Nomenclature 667
1 Introduction 667
2 Fuel Formulations and Manufacturing 669
3 Experimental Setup 670
4 Experimental Results and Discussion 671
5 Conclusions and Future Developments 678
References 680
New Concept of Laser-Augmented Chemical Propulsion 682
1 Principle of Laser-Augmented Chemical Propulsion 682
2 Ballistics of Laser-Augmented Chemical Propulsion Motor 686
3 Conclusion 688
References 688
Catalytic Aspects in the Synthesis of a Promising Energetic Material 690
Nomenclature 690
1 Introduction 691
2 Influence of the Carbonaceous Material Nature and Catalyst Preparation Method on the Pd/C Catalyst Activity and Stability 696
3 Study of the Pd/C Catalyst Deactivation 701
4 Effect of Pd Precursor Reduction Mode on Catalytic Activity 703
5 Identification of Debenzylation Step Mainly Responsible for Pd/C Deactivation 706
6 Effect of the Solvent Nature and Metal Loading 708
7 Effect of Reaction Temperature on the Pd/C Activity and Selectivity 711
8 Upscaling TADFIW Catalytic Synthesis 712
9 Conclusions 714
References 714
Part VIII Life-Cycle Management of Energetic Materials 718
Environmental Aspects of Energetic Materials Use and Disposal 719
1 Introduction 719
2 Risks and Approaches 720
3 Legislative Impact and Greener Energetic Systems 722
4 NATO Studies on Energetics and the Environment 723
4.1 Studies on Greener Munitions and Motors 724
5 Land Contamination Management 726
6 Recycling 729
7 Design for Life 729
8 Future Directions 730
9 Conclusions 731
References 732
Overview and Appraisal of Analytical Techniques for Aging of Solid Rocket Propellants 734
Nomenclature 734
1 Introduction 735
2 Chemical and Thermal Analysis Techniques 739
2.1 Chromatographic Techniques 739
2.2 Spectroscopic Methods 741
2.3 Acidity Analysis 742
2.4 Oxygen Consumption Measurements 742
2.5 Sol/Gel Determination 743
2.6 Thermal Methods 743
3 Mechanical and Physical Analysis Techniques 746
3.1 Dynamic Mechanical Analysis (DMA) 746
3.2 Tensile Testing 748
3.3 Creep and Stress Relaxation 751
3.4 Dilatation Testing 751
3.5 Hardness Testing 752
3.6 Microscopy 753
3.7 Assessment of Ballistic Properties 755
4 Conclusions 756
References 756
Aging Behavior of ADN Solid Rocket Propellants and Their Glass-Rubber Transition Characteristics 761
Nomenclature 762
1 Introduction 763
2 Design of Formulations 765
3 Aging Plan 767
4 Applied Investigation Methods 768
4.1 Tensile Tests 768
4.2 Dynamic Mechanical Analysis (DMA) 768
4.3 Mass Loss Measurements 769
5 Results 769
5.1 Tensile Properties 769
5.2 Chemical Stability Determined by Mass Loss 770
5.3 DMA Measurements and Use of Loss Factor 772
5.4 DMA Measurements on ADN Propellant Formulations 775
5.5 Methodology to Quantify DMA Loss Factor Curves 780
5.6 Evaluation of DMA Loss Factor Curves by EMG Functions 784
6 Conclusions 786
References 788
Lessons Learned in the Thruster Tests of HAN 791
1 Introduction 791
2 Four Failures and Countermeasures 793
2.1 First and Second Failures 793
2.2 Third Failure 794
2.3 Fourth Failure 798
3 Summary 807
References 807
Physical Mechanisms of Upper Atmosphere Optical Phenomena Associated with Rocket Engine Operation 809
1 Introduction 809
2 Rocket Plumes and Rocket Traces in the Atmosphere 811
3 Dynamics of Gas–Dust Clouds 816
4 Turquoise (Blue–Green) Luminescence 822
References 824
Green Technologies for the Safe Disposal of Energetic Materials in the Environment 825
Nomenclature 826
1 Part I: Treatment of Contaminated Water 826
1.1 Introduction 827
1.2 Entry of the Energetic Chemicals in the Water and Its Subsequent Fate 827
1.2.1 Toxicity of Nitroexplosives 828
1.3 Current Status of Green Technologies for Their Removal and Disposal 829
1.3.1 Status of Phytoremediation and Its Scope 829
1.3.2 Status of Microbial Remediation of Energetic Materials 830
1.4 Technologies to Be Explored for High Energetic Material Effluent Disposal 833
1.4.1 Coupled Chemical and Biological Reactor 833
1.4.2 Consortia of Bacteria 833
1.4.3 Biogranulation 834
1.4.4 Microbial Mats 834
2 Part II: Treatment of Contaminated Soil 835
2.1 Introduction 835
2.2 Soil Contamination by Energetic Materials: Magnitude of the Problem 836
2.3 Green Remediation Approaches for Treating Energetic Materials in Soil 838
2.3.1 Ex Situ Technologies 838
2.3.2 In Situ Technologies 840
2.4 Recent Trends in Green Technological Approaches for Treating Energetic Materials in Soil 842
2.4.1 Application of DARAMEND: An Organic Carbon-Rich Amendment for Treating Explosives in Soil 842
2.4.2 Application of Previously Bioremediated Soil for Degrading TNT Chips 843
2.4.3 Hybrid Technologies: Microbial Assisted Phytoremediation 843
2.4.4 UXO Disposal by Incorporating Microbes in the Design of Explosive Formulations 843
2.5 Conclusions 844
References 845
Part IX Space Launchers 851
Challenges in Manufacturing Large Solid Boosters 852
Nomenclature 852
Acronyms 852
Symbols 853
1 Introduction 853
2 SLV-3 All-Solid Launch Vehicle 854
3 ASLV Motors 855
4 Overview of S200 Motor [2] 859
4.1 Challenges in S200 Motor Development [3–5] 859
5 Pressure and Thrust Oscillations [7, 8] 871
6 Future Road Map for Solid Motors [9] 874
7 Conclusion 874
References 875
Evaluating the Interest of New Propellants for the VEGA Launch Vehicle 876
Acronyms 876
1 Introduction 877
2 The Computer Codes 878
2.1 PLISE 878
2.2 SoME 878
2.3 HYES 879
2.4 PERFOL 880
2.5 Coupling PERFOL, SoME, or HYES 880
3 New Propellants 881
3.1 Burning Rate of Solid and Hybrid Propellants 883
4 Example of Application: Evaluation of the Effect of New Propellants on the VEGA Launch Vehicle 884
4.1 Intrinsic Sensitivity to Specific Impulse and Density 884
5 Effect of Density on VEGA Performance 885
5.1 Effects of Hydrides as Fuel 885
6 Hydrides for Hybrid Propulsion 886
6.1 Technical Choices 887
6.1.1 The VEGA Application 888
7 Evaluation of the Payload Increase Using a New ADN Solid Propellant 889
7.1 New P80 889
7.2 New Z23 and New Z9 890
7.3 Global Gain Resulting from Using Target Propellants 891
8 Conclusions 891
References 893
Overview of Research and Development Status of Reusable Rocket Engine 894
1 The Difference Between Reusable and Expendable Rocket Engines 894
2 Engine System and Its System Performance 896
2.1 Engine and Turbopump Performance 896
2.2 Engine Cycles 897
2.3 Review of Flow 897
2.4 Estimation of the Engine Life 898
2.5 Performance and Lifetime 899
3 Key Component Technology: Combustion Chamber 901
3.1 Reduction of Heat Flux 901
3.2 Thermal Barrier Coating 902
3.3 Film Cooling 903
3.4 Transpiration Cooling 903
3.5 Elastic Structure 903
3.6 Micro Channel 905
3.7 Improvement of the Copper Alloy 905
4 Key Component Technology: Mechanical Elements 906
4.1 Bearings for the Turbopump 906
4.2 Shaft Seal for Turbopump 908
4.3 Valve 911
5 Technology Demonstration of the Reusable Rocket Engine 911
5.1 Mission of the Reusable Sounding Rocket (RSR) 911
5.2 Required Functions for Engine of Reusable Sounding Rocket 913
5.2.1 Vertical Takeoff and Landing 914
5.2.2 Reusability for 100 Flights 914
5.2.3 Abort Capability 914
5.2.4 Turnaround Time Within 24 Hours 914
5.3 Engine Design of the Reusable Sounding Rocket 914
5.3.1 Long Life 915
5.3.2 Easy Inspection 915
5.3.3 Lightweight 915
5.3.4 Throttling Capability 916
5.3.5 Restart Capability 916
5.3.6 Health Monitoring 916
5.3.7 Robustness 916
5.4 Technology Demonstration of the Engine of the RSR 917
5.5 Future Plan for Reusable Sounding Rocket 918
6 Summary 919
References 919
Part X Further Applications of Energetic Materials 921
Some Civilian Applications of Solid Propellants 922
1 General Introduction 923
2 Anti-hail Rockets 923
2.1 Hail Formation and Suppression Techniques 924
2.2 Cloud-Seeding Techniques 926
2.3 Basic Design of Anti-hail Suppression Rocket 927
2.4 Spreading of Reagents 929
2.5 Conclusion 931
3 Solid Propellant Fire-Extinguishing Technology 932
3.1 General System Description 932
3.2 SPFE Fire Suppression Mechanism 933
3.3 Active Chemical Agents 935
3.3.1 Propellant Composition 936
3.4 Experimental Techniques 936
3.5 Results and Discussion 938
3.6 Conclusion 939
4 System for Emergency Surfacing of Sinking Objects by Gas Generators 939
4.1 General System Description 940
4.2 Demonstration Tests 942
4.2.1 Open Sea Tests 943
4.3 Conclusion 946
5 Final Conclusion 947
References 947
Novel Ammonium Nitrate-Based Formulations for Airbag Gas Generation 950
1 Introduction 950
1.1 Overview of Automobile Airbags 950
1.2 Brief History of Automobile Airbags 952
1.3 Requirements for Gas-Generating Agents for Automobile Airbags 953
1.4 Overview of a History of Researches and Developments of Gas-Generating Agents 955
2 Overview of the Researches of Ammonium Nitrate-Based Gas-Generating Mixtures 956
2.1 Burning Characteristics of Some Tetrazole/Ammonium Nitrate-Based Mixtures 956
2.1.1 Burning Characteristics of Aminoguanidinium 5,5-Azobis-1H-Tetrazolate/Ammonium Nitrate-Based Mixtures 957
2.2 Burning Characteristics of Some Guanidine Derivative Compound/Ammonium Nitrate-Based Mixtures 960
2.3 Burning Characteristics of Azodicarbonamide/Ammonium Nitrate-Based Mixtures 961
2.3.1 Linear Burning Rate Characteristics 962
2.3.2 Rate-of-Pressure-Rise Test 963
2.3.3 Temperature History of Combustion Waves 965
3 Conclusions 968
References 969
Comparison of Chemical Propulsion Solutions for Large Space Debris Active Removal 972
Acronyms 973
1 Introduction 973
2 Active Multi-removal Mission Concept 976
2.1 De-orbiting Phase Design 978
3 Propulsion Module 982
3.1 Hybrid Propulsion Module 982
3.1.1 Propellant Selection 985
3.2 Preliminary Design and Mass Budget 988
4 Conclusions 994
References 995
Part XI History of Solid Rocket Propulsion in Russia 999
Highlights of Solid Rocket Propulsion History 1000
Nomenclature 1001
1 Prologue 1002
2 Black Powder from China 1002
3 Homogeneous Solid Propellants from Europe 1009
4 First Castable Composite Solid Rocket Propellant from USA 1009
5 Development of Composite Solid Rocket Propellants in USA 1011
6 High-Energy Composite Solid Rocket Propellants 1014
7 Innovative Composite Solid Rocket Propellants from Russia 1015
8 Concluding Remarks 1015
References 1016
Survey of Solid Rocket Propulsion in Russia 1018
Nomenclature 1019
1 Introduction 1019
2 History of Solid Rocket Motor Design in Russia 1021
3 Studies on Solid-Propellant Combustion and Internal Ballistics in Russia 1023
4 Automatic Processing Systems in Russia 1028
5 Guidelines for Solid Rocket Motor Development in Russia 1029
6 Technical Characteristics of Selected Russian Solid Rocket Motors 1033
7 Disposal of Solid Rocket Motors in Russia 1035
8 Conclusions 1036
References 1037
The Contribution of the Semenov Institute of Chemical Physics to the Science of Combustion: A Historical Review 1040
1 Introduction 1040
2 Semenov 1041
3 Zel'dovich 1045
4 Belyaev 1049
References 1053
The Russian Missile Saga: Personal Notes from a Direct Participant 1054
Nomenclature 1054
1 Background 1055
2 Investigating High-Energy Materials 1056
3 Future High-Energy Materials 1064
Erscheint lt. Verlag | 19.8.2016 |
---|---|
Reihe/Serie | Springer Aerospace Technology | Springer Aerospace Technology |
Zusatzinfo | XX, 1084 p. 673 illus., 344 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Technik ► Luft- / Raumfahrttechnik | |
Schlagworte | Chemical Rocket Propulsion • Combustion • Life Management of Energetic Materials • New Formulations of Energetic Materials • Space Launchers |
ISBN-10 | 3-319-27748-0 / 3319277480 |
ISBN-13 | 978-3-319-27748-6 / 9783319277486 |
Haben Sie eine Frage zum Produkt? |
Größe: 34,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich