Intelligent Nanomaterials, Second Edition
John Wiley & Sons Inc (Hersteller)
978-1-119-24262-8 (ISBN)
- Keine Verlagsinformationen verfügbar
- Artikel merken
Ashutosh Tiwari is Secretary General, International Association of Advanced Materials; Chairman and Managing Director of Tekidag AB (Innotech); Associate Professor and Group Leader, Smart Materials and Biodevices at the world premier Biosensors and Bioelectronics Centre, IFM-Linkoeping University; Editor-in-Chief, Advanced Materials Letters; a materials chemist and docent in the Applied Physics with the specialization of Biosensors and Bioelectronics from Linkoeping University, Sweden. Yogendra Kumar Mishra is the Group Leader at Functional Nanomaterials, Institute for Materials Science, University of Kiel, Germany. Hisatoshi Kobayashi is a group leader of WPI Research center MANA, National Institute for Material Science, Tsukuba Japan. Anthony (Tony) Turner's name is synonymous with the field of Biosensors. In November 2010, he joined Linkoeping University to create a new Centre for Biosensors and Bioelectronics.
Preface xvii Part 1 Nanomaterials, Fabrication and Biomedical Applications 1 Electrospinning Materials for Skin Tissue Engineering 3 Beste Kinikoglu 1.1 Skin Tissue Engineering Scaffolds 4 1.2 Conclusions 14 References 15 2 Electrospinning: A Versatile Technique to Synthesize Drug Delivery Systems 21 Xueping Zhang, Dong Liu and Tianyan You 2.1 Introduction 21 2.2 The Types of Delivered Drugs 22 2.3 Polymers Used in Electrospinning 29 2.4 The Development of Electrospinning Process for Drug Delivery 36 2.5 Conclusions 41 Acknowledgment 42 References 42 3 Electrospray Jet Emission: An Alternative Interpretation Invoking Dielectrophoretic Forces 51 Francesco Aliotta, Oleg Gerasymov and Pietro Calandra 3.1 Introduction 52 3.2 Electrospray: How It Works? 54 3.3 Historical Background 63 3.4 How the Current (and Wrong) Description of the Electrospray Process Has Been Generated? 65 3.5 What Is Wrong in the Current Description? 68 3.6 Some Results Shedding More Light 70 3.7 Discriminating between Electrophoretic and Dielectrophoretic Forces 72 3.8 Some Theoretical Aspects of Dielectrophoresis 76 3.9 Conclusions 83 References 86 4 Advanced Silver and Oxide Hybrids of Catalysts During Formaldehyde Production 91 Anita Kova Kralj 4.1 Introduction 92 4.2 The Catalysis 93 4.3 Case Study 95 4.4 Limited Hybrid Catalyst Method for Formaldehyde Production 97 4.5 Conclusion 104 4.6 Nomenclatures 105 References 105 5 Physico-chemical Characterization and Basic Research Principles of Advanced Drug Delivery Nanosystems 107 Natassa Pippa, Stergios Pispas and Costas Demetzos 5.1 Introduction 108 5.2 Basic Research Principles and Techniques for the Physicochemical Characterization of Advanced Drug Delivery Nanosystems 108 5.3 Conclusions 122 References 122 6 Nanoporous Alumina as an Intelligent Nanomaterial for Biomedical Applications 127 Moom Sinn Aw and Dusan Losic 6.1 Introduction 127 6.2 Nanoporous Anodized Alumina as a Drug Nano-carrier 129 6.3 Biocompatibility of NAA and NNAA Materials 138 6.4 NAA for Diabetic and Pancreatic Applications 143 6.5 NAA Applications in Orthopedics 144 6.6 NAA Applications for Heart, Coronary, and Vasculature Treatment 148 6.7 NAA in Dentistry 150 6.8 Conclusions and Future Prospects 152 Acknowledgment 153 References 154 7 Nanomaterials: Structural Peculiarities, Biological Effects, and Some Aspects of Applications 161 N.F. Starodub, M.V. Taran, A.M. Katsev, C. Bisio and M. Guidotti 7.1 Introduction 162 7.2 Physicochemical Properties Determining the Bioavailability and Toxicity of NPS 164 7.3 Current Nanoecotoxicological Knowledge 168 7.4 Modern Direction of the Application of Nanocomposites as Basis for Detoxication Process 187 7.5 Conclusions 189 Acknowledgments 190 References 190 8 Biomedical Applications of Intelligent Nanomaterials 199 M. D. Fahmy, H. E. Jazayeri, M. Razavi, M. Hashemi, M. Omidi, M. Farahani, E. Salahinejad, A. Yadegari, S. Pitcher and Lobat Tayebi 8.1 Introduction 200 8.2 Polymeric Nanoparticles 202 8.3 Lipid-based Nanoparticles 206 8.4 Carbon Nanostructures 213 8.5 Nanostructured Metals 219 8.6 Hybrid Nanostructures 223 8.7 Concluding Remarks 228 References 229 Part 2 Nanomaterials for Energy, Electronics, and Biosensing 9 Phase Change Materials as Smart Nanomaterials for Thermal Energy Storage in Buildings 249 M. Kheradmand, M. Abdollahzadeh, M. Azenha and J.L.B. de Aguiar 9.1 Introduction 250 9.2 Phase Change Materials: Definition, Principle of Operation, and Classifications 252 9.3 PCM-enhanced Cement-based Materials 254 9.4 Hybrid PCM for Thermal Storage 255 9.5 Numerical Simulations 267 9.6 Thermal Modeling of Phase Change 269 9.7 Nanoparticle-enhanced Phase Change Material 280 9.8 Conclusions (General Remarks) 288 References 289 10 Nanofluids with Enhanced Heat Transfer Properties for Thermal Energy Storage 295 Manila Chieruzzi, Adio Miliozzi, Luigi Torre and Jose Maria Kenny 10.1 Introduction 296 10.2 Thermal Energy Storage 298 10.3 Nanofluids for Thermal Energy Storage 313 10.4 Nanofluids Based on Molten Salts: Enhancement of Thermal Properties 330 10.5 Conclusions 349 References 351 11 Resistive Switching of Vertically Aligned Carbon Nanotubes for Advanced Nanoelectronics Devices 361 O.A. Ageev, Yu. F. Blinov, M.V. Il ina, B.G. Konoplev and V.A. Smirnov 11.1 Introduction 362 11.2 Theoretical Description of Resistive Switching Mechanism of Structures Based on VACNT 363 11.3 Techniques for Measuring the Electrical Resistivity and Young s Modulus of VACNT Based on Scanning Probe Microscopy 377 11.4 Experimental Studies of Resistive Switching in Structures Based on VACNT Using Scanning Tunnel Microscopy 384 References 391 12 Multi-objective Design of Nanoscale Double Gate MOSFET Devices Using Surrogate Modeling and Global Optimization 395 T. Bentrcia, F. Djeffal and E. Chebaki 12.1 Introduction 396 12.2 Downscaling Parasitic Effects 400 12.3 Modeling Framework 405 12.4 Simulation and Results 412 12.5 Concluding Remarks 422 References 422 13 Graphene-based Electrochemical Biosensors: New Trends and Applications 427 Georgia-Paraskevi Nikoleli, Stephanos Karapetis, Spyridoula Bratakou, Dimitrios P. Nikolelis, Nikolaos Tzamtzis and Vasillios N. Psychoyios 13.1 Introduction 428 13.2 Scope of This Review 429 13.3 Graphene and Sensors 430 13.4 Graphene Nanomaterials Used in Electrochemical (Bio)sensors Fabrication 430 13.5 Graphene-based Enzymatic Electrodes 432 13.6 Graphene-based Electrochemical DNA Sensors 437 13.7 Graphene-based Electrochemical Immunosensors 439 13.8 Commercial Activities in the Field of Graphene Sensors 442 13.9 Recent Developments in the Field of Graphene Sensors 442 13.10 Conclusions and Future Prospects 443 Acknowledgments 445 References 445 Part 3 Smart Nanocomposites, Fabrication, and Applications 14 Carbon Fibers-based Silica Aerogel Nanocomposites 451 Agnieszka losarczyk 14.1 Introduction to Nanotechnology 451 14.2 Chemistry of Sol gel Process 454 14.3 Types of Silica Aerogel Nanocomposites 462 14.4 Carbon Fiber-based Silica Aerogel Nanocomposites 476 14.5 Conclusions 493 References 494 15 Hydrogel carbon Nanotubes Composites for Protection of Egg Yolk Antibodies 501 Bellingeri Romina, Alustiza Fabrisio, Picco Natalia, Motta Carlos, Grosso Maria C, Barbero Cesar, Acevedo Diego and Vivas Adriana 15.1 Introduction 502 15.2 Polymeric Hydrogels 504 15.3 Carbon Nanotubes 507 15.4 Polymer CNT Composites 511 15.5 Egg Yolk Antibodies Protection 515 15.6 In Vitro Evaluation of Nanocomposite Performance 517 15.7 In Vivo Evaluation of Nanocomposite Performance 518 15.8 Concluding Remarks and Future Trends 521 References 522 16 Green Fabrication of Metal Nanoparticles 533 Anamika Mubayi, Sanjukta Chatterji and Geeta Watal 16.1 Introduction 533 16.2 Development of Herbal Medicines 535 16.3 Green Synthesis of Nanoparticles 536 16.4 Characterization of Phytofabricated Nanoparticles 539 16.5 Impact of Plant-mediated Nanoparticles on Therapeutic Efficacy of Medicinal Plants 540 16.6 Conclusions 550 References 551
Verlagsort | New York |
---|---|
Sprache | englisch |
Maße | 150 x 250 mm |
Gewicht | 666 g |
Themenwelt | Naturwissenschaften ► Chemie |
Technik ► Maschinenbau | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-119-24262-2 / 1119242622 |
ISBN-13 | 978-1-119-24262-8 / 9781119242628 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich