Constitutive Equations for Anisotropic and Isotropic Materials
Elsevier Science Ltd (Verlag)
978-0-444-88405-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Constitutive equations define the response of materials which are subjected to applied fields. This volume presents the procedures for generating constitutive equations describing the response of crystals, isotropic and transversely isotropic materials. The book discusses the application of group representation theory, Young symmetry operators and generating functions to the determination of the general form of constitutive equations. Basic quantity tables, character tables, irreducible representation tables and direct product tables are included.
Part 1 Basic concepts: transformation properties of tensors; description of material symmetry; restrictions due to material symmetry; constitutive equations. Part 2 Group representation theory: elements of group theory; group representations; Schur's Lemma and orthogonality properties; group characters; continuous groups. Part 3 Elements of invariant theory: some fundamental theorems. Part 4 Invariant tensors: decomposition of property tensors; frames, standard tableaux and young symmetry operators; the inner product of property tensors and physical tensors; symmetry class of products of physical tensors; symmetry types of complete sets of property tensors; examples. Part 5 Group averaging methods: averaging procedure for scalar-valued functions; decomposition of physical tensors; averaging procedures for tensor-valued functions; examples; generation of property tensors. Part 6 Anisotropic constitutive equations and Schur's Lemma: application of Schur's Lemma - finite groups; the crystal class D[3]; product tables. Part 7 Generation of integrity bases - the crystallographic groups: reduction to standard form; integrity bases for the triclinic, monoclinic, rhombic, tetragonal and hexagonal crystal classes; generation of product tables. Part 8 Generation of integrity bases - continuous groups: identities relating 3 x 3 matrices; generation of the multilinear elements of an integrity basis; transversely isotropic functions. Part 9 Generation of integrity bases - the cubic crystallographic groups: introduction - tetartoidal class, T, 23; gyrodial class, 0, 432. Part 10 Irreducible polynomial constitutive expressions: generating functions; irreducible expressions - the crystallographic groups. (Part Contents).
Reihe/Serie | Mechanics of Physics of Discrete Systems S. ; v. 3 |
---|---|
Zusatzinfo | tables, references, index |
Verlagsort | Oxford |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Technik ► Maschinenbau | |
ISBN-10 | 0-444-88405-X / 044488405X |
ISBN-13 | 978-0-444-88405-3 / 9780444884053 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich