Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light (eBook)

(Autor)

eBook Download: PDF
2016 | 1st ed. 2016
XXVI, 88 Seiten
Springer International Publishing (Verlag)
978-3-319-28793-5 (ISBN)

Lese- und Medienproben

Optical Characterization of Plasmonic Nanostructures: Near-Field Imaging of the Magnetic Field of Light - Denitza Denkova
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This thesis focuses on a means of obtaining, for the first time, full electromagnetic imaging of photonic nanostructures. The author also develops a unique practical simulation framework which is used to confirm the results.

The development of innovative photonic devices and metamaterials with tailor-made functionalities depends critically on our capability to characterize them and understand the underlying light-matter interactions. Thus, imaging all components of the electromagnetic light field at nanoscale resolution is of paramount importance in this area. This challenge is answered by demonstrating experimentally that a hollow-pyramid aperture probe SNOM can directly image the horizontal magnetic field of light in simple plasmonic antennas - rod, disk and ring. These results are confirmed by numerical simulations, showing that the probe can be approximated, to first order, by a magnetic point-dipole source. This approximation substantially reduces the simulation time and complexity and facilitates the otherwise controversial interpretation of near-field images. The validated technique is used to study complex plasmonic antennas and to explore new opportunities for their engineering and characterization.



Denitza Denkova completed her Bachelor (2008) and Master (2010) studies in Physics at Sofia University, Bulgaria. During her studies she also worked part-time as an engineer at Melexis, a microelectronics company. In a joint project between these institutions she studied specific malfunctions in microelectronics circuits via various structural, optical and electrical characterization techniques, including the development of a cathodoluminescence add-on to a scanning electron microscope. Denitza then moved to KU Leuven, Belgium to further develop her interest in nanoscale characterization as a PhD. There she developed and applied a novel approach for imaging the magnetic field of light with nanoscale resolution, in the context of characterization of plasmonic and metamaterial devices.

Denitza Denkova completed her Bachelor (2008) and Master (2010) studies in Physics at Sofia University, Bulgaria. During her studies she also worked part-time as an engineer at Melexis, a microelectronics company. In a joint project between these institutions she studied specific malfunctions in microelectronics circuits via various structural, optical and electrical characterization techniques, including the development of a cathodoluminescence add-on to a scanning electron microscope. Denitza then moved to KU Leuven, Belgium to further develop her interest in nanoscale characterization as a PhD. There she developed and applied a novel approach for imaging the magnetic field of light with nanoscale resolution, in the context of characterization of plasmonic and metamaterial devices.

Supervisor’s Foreword 7
Abstract 9
Acknowledgments 12
Contents 17
Abbreviations 20
Symbols 21
1 Introduction 23
1.1 Surface Plasmon Resonances in Metal Nanoparticles 23
1.1.1 The Underlying Physics 23
1.1.2 Plasmonics: Application Highlights 26
1.1.3 Optical Characterization of Plasmonic Devices 28
1.2 Scanning Near-Field Optical Microscopy (SNOM) 30
1.2.1 The Diffraction Limit 30
1.2.2 Principles of Sub-wavelength Optical Microscopy 37
1.2.3 Basic Configuration and Practical Realizations 38
1.2.4 Artifacts and Challenges 45
1.3 SNOM for Imaging the Magnetic Field of Light 46
1.3.1 Imaging the Electromagnetic Field Components by SNOM 47
1.3.2 Fundamental Challenges in Imaging the Magnetic Field of Light 48
1.3.3 Experimental Setup for Imaging the Magnetic Field of Light 50
References 51
2 Imaging the Magnetic Near-Field of Plasmon Modes in Bar Antennas 56
2.1 Introduction 56
2.2 Results and Discussion 58
2.2.1 Individual Probe and Sample Characterization 59
2.2.2 Probe-Sample Coupling: Imaging of the |Hy|2 Near-Field Distribution of an l=3 Plasmon Mode in a Gold Bar 60
2.2.3 Imaging of the |Hy|2 Near-Field Distribution of Different Plasmon Modes in a Gold Bar 64
2.2.4 Plasmon Dispersion Relation Obtained by SNOM 64
2.3 Conclusions 67
2.4 Methods 68
2.4.1 Sample Fabrication 68
2.4.2 FDTD Simulations 68
2.4.3 Electric and Magnetic Field Profiles at the Apex of the Probe 69
References 70
3 A Near-Field Aperture-Probe as an Optical Magnetic Source and Detector 74
3.1 Introduction 74
3.2 Results and Discussion 75
3.2.1 Hollow-Pyramid Aperture Probe as a tangential Hy Dipole Source: Intuitive Physical Justification 75
3.2.2 Correspondence Between the Fields of the Hollow-Pyramid Probe and a tangential Hy Dipole: Simulations 78
3.2.3 Scanning of the Probe Over a Sample 79
3.2.4 Experimental Evidence for Equivalence of Collection and Illumination Mode SNOM 81
3.3 Conclusions 82
References 83
4 Magnetic Near-Field Imaging of Increasingly Complex Plasmonic Antennas 84
4.1 Introduction 84
4.2 Results and Discussion 86
4.2.1 Simple Antennas 87
4.2.2 Complex Antennas Consisting of Assembled Bars 89
4.3 Conclusions 93
4.4 Methods 94
4.4.1 Sample Preparation 94
4.4.2 Simulations 94
4.5 Supporting Information 94
4.5.1 Simulation of the |Hy|2 Near-Field Map of an Elementary Horizontal Bar 96
4.5.2 Simulation of the |Hy|2 Near-Field Map of an Elementary Vertical Bar 96
4.5.3 Simulation of the |Hy|2 Near-Field Map of Complex Antennas 96
4.5.4 Electromagnetic Field Components of a Representative Complex Antenna 98
References 99
5 Conclusions and Outlook 101
5.1 Conclusions 101
5.2 Outlook 103
Curriculum Vitae 105

Erscheint lt. Verlag 20.4.2016
Reihe/Serie Springer Theses
Springer Theses
Zusatzinfo XXVI, 88 p. 36 illus., 35 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte light-matter interaction • Near-field Imaging • Optical Magnetic Field • Plasmonic Antenna • Scanning Near-field Optical Microscopy • SNOM NSOM • Surface Plasmon Resonance • Tailor-made metamaterials
ISBN-10 3-319-28793-1 / 3319287931
ISBN-13 978-3-319-28793-5 / 9783319287935
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Von Energie und Entropie zu Wärmeübertragung und Phasenübergängen

von Rainer Müller

eBook Download (2023)
De Gruyter (Verlag)
54,95