Seismic Behavior of Steel Storage Pallet Racking Systems (eBook)

eBook Download: PDF
2016 | 1st ed. 2016
XLVI, 461 Seiten
Springer International Publishing (Verlag)
978-3-319-28466-8 (ISBN)

Lese- und Medienproben

Seismic Behavior of Steel Storage Pallet Racking Systems - Carlo Andrea Castiglioni
Systemvoraussetzungen
128,39 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book presents the main outcomes of the first European research project on the seismic behavior of adjustable steel storage pallet racking systems. In particular, it describes a comprehensive and unique set of full-scale tests designed to assess such behavior. The tests performed include cyclic tests of full-scale rack components, namely beam-to-upright connections and column base connections; static and dynamic tests to assess the friction factor between pallets and rack beams; full-scale pushover and pseudodynamic tests of storage racks in down-aisle and cross-aisle directions; and full-scale dynamic tests on two-bay, three-level rack models. The implications of the findings of this extensive testing regime on the seismic behavior of racking systems are discussed in detail, highlighting e.g. the confirmation that under severe dynamic conditions 'sliding' is the main factor influencing rack response. This work was conceived during the development of the SEISRACKS project. Its outcomes will contribute significantly to increasing our knowledge of the structural behavior of racks under earthquake conditions and should inform future rack design.

Carlo Andrea Castiglioni, PhD, is Full Professor of Structural Design at Politecnico di Milano, Milan, Italy. He gained his doctorate in Civil and Environmental Engineering from the University of Genoa, Italy, and has been active since 1983 as a designer and consultant (to both public and private companies) in the field of structural engineering. He has conducted extensive research on the stability of structural members, fatigue and fracture, and the seismic behavior of steel structures.  Dr. Castiglioni has been a member of the Structural Engineering Commission of UNI (Italian Standards Organization), Vice President of the interuniversity consortium SAFER (Safety, Reliability, Risk Assessment), and Coordinator of the W.G. 4 (steel and composite steel-concrete structures) of the drafting panel of the Italian Building Code (NTC). He is the author or co-author of more than 190 papers in the field of civil engineering. 

Carlo Andrea Castiglioni, PhD, is Full Professor of Structural Design at Politecnico di Milano, Milan, Italy. He gained his doctorate in Civil and Environmental Engineering from the University of Genoa, Italy, and has been active since 1983 as a designer and consultant (to both public and private companies) in the field of structural engineering. He has conducted extensive research on the stability of structural members, fatigue and fracture, and the seismic behavior of steel structures.  Dr. Castiglioni has been a member of the Structural Engineering Commission of UNI (Italian Standards Organization), Vice President of the interuniversity consortium SAFER (Safety, Reliability, Risk Assessment), and Coordinator of the W.G. 4 (steel and composite steel-concrete structures) of the drafting panel of the Italian Building Code (NTC). He is the author or co-author of more than 190 papers in the field of civil engineering. 

Foreword by Luis Calado 8
Foreword by Stefano Sesana 10
Contents 12
List of Figures 18
List of Tables 40
1 Introduction 46
1.1 Background 46
1.2 The International Situation 49
1.3 Overview of Damage to Steel Pallet Storage Racks and Content Spillage 51
1.4 Damage to Steel Pallet Storage Racks and Content Spillage in Recent Earthquakes 56
1.4.1 Background 56
1.4.2 Damage Reported in the 1987 Whittier Earthquake 57
1.4.3 Damage Reported in the 1989 Loma Prieta Earthquake 58
1.4.4 Damage Reported in the 1992 Landers Earthquake 58
1.4.5 Damage Reported in the 1994 Northridge Earthquake 59
1.4.5.1 Price Club, Northridge, California 59
1.4.5.2 Home Depot, Santa Clarita, California 59
1.4.5.3 Home Depot, Canoga Park, California 63
1.4.5.4 Home Depot, Glendale, California 63
1.4.5.5 Home Club, Canoga Park, California 63
1.4.6 Damage Reported in the 2001 Nisqually Earthquake 64
1.4.6.1 Home Depot, Olympia, Washington 64
1.4.7 Damage Reported in the 2003 San Simeon Earthquake 64
1.5 Codes and Standards for Storage Racks---Previous Researches 65
1.5.1 Recommendations for the Design of Static Steel Pallet Racks Under Seismic Conditions (Pr FEM 10.2.08, European Racking Federation, the Racking and Shelving Product Group of the Federation Europ00E9enne de La Manutention) 67
1.5.1.1 Definition of the Intensity of the Seismic Action 69
1.5.1.2 Earthquake Design Return Period and Importance Factor gamma I 69
1.5.1.3 Design Parameters for the Seismic Analysis 70
1.5.1.3.1 Design Spectrum Modification Factor 70
1.5.1.3.2 Design Seismic Pallet Weight 70
1.5.1.3.3 Pallet Weight Modification Factor ED2 71
1.5.1.3.4 Pallet Sliding 71
1.5.1.4 Other Seismic Weights 72
1.5.1.5 Position of the Centre of Gravity of the Pallet 73
1.5.1.6 Methods of Analysis 74
1.5.1.7 Base Shear Force 75
1.5.1.8 Combination of the Horizontal Components of the Seismic Action 75
1.5.1.9 Combination of the Vertical Component of the Seismic Action 76
1.5.1.10 Displacements Analysis 76
1.5.1.11 Regularity Criteria 77
1.5.1.11.1 Cross-Aisle Direction 77
1.5.1.11.2 Down Aisle Direction 77
1.5.1.12 Rules for the Design of Low Dissipative Structures 78
1.5.1.13 Structural Systems Withstanding the Seismic Action 78
1.5.1.14 Specific Modelling Requirements for the Analysis 79
1.5.1.15 Structural Types and Maximum Associated Behaviour Factors 80
1.5.1.15.1 Upright Frames 80
1.5.1.15.2 Moment Resisting Frames 80
1.5.1.15.3 Vertical Bracings 81
1.5.1.15.4 Bracings with Tension Diagonals 82
1.5.1.15.5 Bracings with Diagonals Working in Tension and Compression 82
1.5.1.15.6 Horizontal Bracings 82
1.5.1.16 Safety Verifications 82
1.5.1.16.1 Ultimate Limit State 82
1.5.1.16.2 Serviceability Limit State 83
1.5.1.16.2.1 Damage Limitation Requirement 83
1.5.1.16.2.2 Pallet Sliding 83
1.5.1.16.2.3 Pallet Falling 83
1.5.1.16.2.4 Falling of the Pallets Inside the Rack 84
1.5.1.16.2.5 Falling of Pallets Outside the Rack 84
1.5.1.16.2.6 Pallets Fixed on the Rack 84
1.5.1.16.2.7 Summary of the Effects Induced by Seismic Action on Rack's Elements 84
1.5.1.17 Structural Systems Withstanding the Seismic Action 84
1.5.1.18 Regularity Criteria---Down-Aisle Direction 88
1.5.1.19 Typical Occurrences in the Seismic Analysis of Racks 88
1.5.2 Current Storage Rack Seismic Design Provisions and Practices in the U.S. 88
1.5.2.1 Development of Codes and Standards in the Past Decades 88
1.5.2.1.1 RMI Standards 88
1.5.2.1.2 Model Building Code Requirements 92
1.5.2.1.3 NEHRP Recommended Provisions 92
1.5.2.1.4 ASCE 7 Requirements 93
1.5.2.2 Current Seismic Requirements for Storage Racks 93
1.5.2.3 The Evolving RMI Standard 94
1.5.2.4 Current Storage Rack Seismic Design Practices in the U.S 94
1.5.2.4.1 Pallet Loads and Effective Sesimic Weights 95
1.5.2.4.2 Rack Configuration 98
1.5.2.4.3 Seismic Loads 99
1.6 Review of Past Seismic Research on Storage Racks 99
1.6.1 Review of Experimental Research 100
1.6.1.1 Cantilever Testing of Storage Rack Subassemblies 100
1.6.1.2 Portal Testing of Storage Rack Subassemblies 101
1.6.1.3 Quasi-Static Cyclic Testing of Complete Storage Rack Systems 102
1.6.1.4 Dynamic in Situ Testing of Storage Rack Systems 103
1.6.1.5 Shake-Table Testing of Storage Rack Systems 104
1.6.1.6 Experimental Research on Cold-Formed Steel Members 105
1.6.1.7 Testing of Merchandise 106
1.6.2 Review of Analytical and Numerical Researches 106
1.6.2.1 Linear Modelling of Storage Rack Systems 107
1.6.2.2 Nonlinear Modelling of Storage Rack Systems 108
1.6.3 Research Needs 109
1.6.3.1 Experimental Research Needs 109
1.6.3.2 Analytical Research Needs 110
1.7 Scope and Aim of the Research 110
References 114
Further Readings 115
2 Component Tests 118
2.1 Overview 118
2.2 Beam-to-Upright Connections 119
2.2.1 Monotonic Tests 124
2.2.1.1 Beam 70 x 45 x 1.5 124
2.2.1.2 Beam 130 x 45 x 1.5 127
2.2.2 Cyclic Tests 128
2.2.2.1 Cyclic Loading History 128
2.2.2.1.1 Innovative Cyclic Testing Procedure 131
2.2.2.1.2 Comparison Between Testing Procedures 133
2.2.2.2 Beam 70 x 45 x 1.5 136
2.2.2.3 Beam 130 x 45 x 1.5 139
2.2.3 Comparison and Analysis of Test Results 140
2.2.3.1 Monotonic Tests 140
2.2.3.2 Cyclic Tests 146
2.2.4 Conclusions 152
2.3 Column Base Connections 153
2.3.1 Monotonic Tests 158
2.3.1.1 Cross-Aisle 158
2.3.1.1.1 Bolts in Tension 158
2.3.1.1.2 Bolts in the Compression Zone 159
2.3.1.2 Down-Aisle 166
2.3.2 Cyclic Tests 172
2.3.2.1 Cross-Aisle 172
2.3.2.2 Down-Aisle 174
2.3.3 Comparison and Analysis of Test Results 177
2.3.3.1 Monotonic Tests 177
2.3.3.2 Cyclic Tests 186
2.3.4 Conclusions 195
References 196
Further Readings 196
3 Pallet Sliding 200
3.1 Overview 200
3.1.1 Friction Models 200
3.1.2 Numerical Models for Sliding of Pallets 204
3.1.3 Aims and Scopes of the Investigation 210
3.2 Assessment of the Static Friction Factor 210
3.2.1 Overview 210
3.2.2 Friction in Cross-Aisle Direction 216
3.2.2.1 Influence of the Pallet Type 216
3.2.2.2 Influence of the Beam Type 218
3.2.2.3 Influence of the Applied Mass 221
3.2.3 Friction in Down-Aisle Direction 225
3.2.3.1 Influence of the Pallet Type 225
3.2.3.2 Influence of the Beam Type 230
3.2.3.3 Influence of the Applied Mass 232
3.2.3.4 Influence of the Mass Eccentricity 241
3.3 Assessment of the Sliding Conditions of the Pallets Under Dynamic Loading 243
3.3.1 Tests in Cross-Aisle Direction 245
3.3.1.1 Test Set up 245
3.3.1.2 Procedure for Re-analysis of the Tests Results 246
3.3.1.3 Results of the Cross-Aisle Tests 256
3.3.1.3.1 Test with Pallet Type P2---Beam Type B1 256
3.3.1.3.2 Frequency = 1.0 Hz 256
3.3.1.3.2.1 Frequency = 2.0 Hz 256
3.3.1.3.2.2 Frequency = 3.0 Hz 258
3.3.1.3.2.3 Frequency = 4.0 Hz 260
3.3.1.3.2.4 Re-analysis of P2-B1 Test Results 260
3.3.1.3.3 Test with Pallet Type P2---Beam Type B3 267
3.3.1.3.3.1 Frequency = 1.0 Hz 267
3.3.1.3.3.2 Frequency = 1.5 Hz 268
3.3.1.3.3.3 Frequency = 2.0 Hz 268
3.3.1.3.3.4 Frequency = 2.5 Hz 271
3.3.1.3.3.5 Frequency = 3.0 Hz 272
3.3.1.3.3.6 Re-analysis of P2-B3 Test Results 274
3.3.2 Tests in Down-Aisle Direction 276
3.3.2.1 Test Set up 276
3.3.2.2 Procedure for Re-Analysis of the Test Results 279
3.3.2.3 Results of the Down-Aisle Tests 286
3.3.2.3.1 Constant Frequency and Increasing Acceleration Tests 286
3.3.2.3.1.1 Frequency = 1.0 Hz 287
3.3.2.3.1.2 Frequency = 2.0 Hz 288
3.3.2.3.1.3 Frequency = 3.0 Hz 290
3.3.2.3.1.4 Frequency = 4.0 Hz 291
3.3.2.3.1.5 Re-analysis of P2-B2 Down-Aisle Test Results 292
3.3.2.3.2 Constant Acceleration and Increasing Frequency Tests 297
3.4 Comparison and Discussion of the Tests Results 299
3.4.1 Cross-Aisle Tests 299
3.4.2 Down-Aisle Tests 300
3.5 Seismic Tests 301
3.5.1 Seismic Test---Cross-Aisle Direction 306
3.5.2 Seismic Test---Down-Aisle Direction 312
3.5.3 Bidirectional Seismic Test 326
3.6 Conclusions 334
References 336
Further Readings 336
4 Pushover Tests 339
4.1 Overview 339
4.2 Push-Over Test in Down-Aisle Direction 341
4.2.1 Test Set-up 341
4.2.2 Structural Behaviour 344
4.2.3 Analysis of Test Results 345
4.2.4 Assessment of the q-Factor 352
4.3 Push-Over Test in Cross-Aisle Direction 356
4.3.1 Test Set-up 356
4.3.2 Structural Behaviour 359
4.3.3 Analysis of Test Results 360
4.3.4 Assessment of the q-Factor 370
4.4 Down-Aisle Cross-Aisle Comparison 371
4.5 Conclusions 373
Reference 375
Further Readings 375
5 Pseudodynamic Tests 377
5.1 Overview 377
5.2 Test Set-up 380
5.3 Test Results 385
5.4 Conclusions 396
References 398
Further Readings 398
6 Dynamic Full-Scale Tests 400
6.1 Overview 400
6.1.1 Previous Studies 400
6.1.1.1 Research in the U.S. 400
6.1.1.1.1 Dynamic In Situ Testing of Storage Rack Systems 400
6.1.1.1.2 Shake-Table Testing of Storage Rack Systems 401
6.1.1.1.3 Shake-Table Testing of Merchandise 403
6.1.1.2 Research in Europe 404
6.1.2 Research Needs 405
6.2 Dynamic Tests on Merchandise 406
6.3 Shake-Table Tests on Full-Scale Pallet-Type Steel Storage Racks 407
6.3.1 Test Infrastructure 407
6.3.2 Test Set-up 409
6.3.3 The ECOLEADER Project on ``Seismic Behaviour of Pallet Rack Systems'' 410
6.3.3.1 The Specimens 410
6.3.3.1.1 Specimen A 410
6.3.3.1.2 Specimen B 411
6.3.3.1.3 Specimen C 414
6.3.3.1.4 Specimen D 418
6.3.3.2 Dynamic Tests 419
6.3.3.3 Results 422
6.3.3.3.1 Specimen B 422
6.3.3.3.2 Specimen D 431
6.3.3.4 Conclusions 444
6.3.4 The SEISRACKS Project 445
6.3.4.1 Overview 445
6.3.4.2 Testing Procedure 446
6.3.4.2.1 Random Vibration Test 447
6.3.4.2.2 Earthquake Tests 447
6.3.4.3 Test Specimens 449
6.3.4.3.1 Specimen A1 449
6.3.4.3.2 Specimen A2 451
6.3.4.3.3 Specimen A3 452
6.3.4.3.4 Specimen A4 452
6.3.4.3.5 Specimen A5 453
6.3.4.3.6 Specimen A6 453
6.3.4.4 Test Results 456
6.3.4.4.1 Specimen Eigen-Frequencies 456
6.3.4.4.2 Down-Aisle Tests 459
6.3.4.4.2.1 Specimens Without Base Isolation 459
6.3.4.4.2.2 Specimens with Base Isolation 463
6.3.4.4.3 Cross-Aisle Tests 466
6.3.4.4.4 Failure Modes 468
6.3.4.4.4.1 Specimen A1 469
6.3.4.4.4.2 Specimen A3 471
6.3.4.4.4.3 Specimen A4 471
6.3.4.5 Conclusions 472
6.4 Assessment of the Behaviour Factor (Q-Factor) 474
6.4.1 Overview 474
6.4.2 Assessment of Behaviour Factor for Pallet Racks 475
6.5 Conclusions 477
References 478
Further Readings 479
7 Conclusions 481
7.1 Comments on FEM 10-2-08 491
7.1.1 General Introduction 491
7.1.2 Regularity Criteria 492
7.1.3 Position and Height of the Masses 492
7.1.4 Methods of Analysis 493
7.1.5 Pallet Weight Modification Factor ED2 493
7.1.6 Design Spectrum Modification Factor ED1 494
7.1.7 Rack Filling Factor RF 495
7.1.8 Ductility and Behaviour Factor q 495
7.1.9 Characterization of Joints for the Analysis 496
7.1.10 Detailing Rules for Moment Resisting Frames 496
7.1.11 Ductility Classes 496
7.1.12 Vertical Component of the Seismic Action 496
7.2 Future Developments 497
Appendix A---Emilia Earthquake 498

Erscheint lt. Verlag 4.2.2016
Reihe/Serie Research for Development
Research for Development
Zusatzinfo XLVI, 461 p. 475 illus., 253 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte Adjustable Pallet Racks • Dynamic Testing of Storage Rack Systems • Full-scale Testing and Foundation Design • Pseudodynamic Tests • Push-over Test in Down-aisle Direction • Seismic Behavior of Steel Storage Racks • Static Friction Factor • Static Steel Pallet Racks Under Seismic Conditions • Steel Storage Pallet Racking Systems • warehouse logistics
ISBN-10 3-319-28466-5 / 3319284665
ISBN-13 978-3-319-28466-8 / 9783319284668
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 29,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich