Noncontact Atomic Force Microscopy (eBook)
XXII, 527 Seiten
Springer International Publishing (Verlag)
978-3-319-15588-3 (ISBN)
This book presents the latest developments in noncontact atomic force microscopy. It deals with the following outstanding functions and applications that have been obtained with atomic resolution after the publication of volume 2: (1) Pauli repulsive force imaging of molecular structure, (2) Applications of force spectroscopy and force mapping with atomic resolution, (3) Applications of tuning forks, (4) Applications of atomic/molecular manipulation, (5) Applications of magnetic exchange force microscopy, (6) Applications of atomic and molecular imaging in liquids, (7) Applications of combined AFM/STM with atomic resolution, and (8) New technologies in dynamic force microscopy. These results and technologies are now expanding the capacity of the NC-AFM with imaging functions on an atomic scale toward making them characterization and manipulation tools of individual atoms/molecules and nanostructures, with outstanding capability at the level of molecular, atomic, and subatomic resolution. Since the publication of vol. 2 of the book Noncontact Atomic Force Microscopy in 2009 the noncontact atomic force microscope, which can image even insulators with atomic resolution, has achieved remarkable progress. The NC-AFM is now becoming crucial for nanoscience and nanotechnology.
Preface 6
Contents 9
Contributors 19
1 Introduction 23
1.1 Rapidly Developing High Performance AFM 23
1.1.1 Tip Modification 24
1.1.2 Control of Atomic Force 25
1.1.3 Pauli Repulsive Force Imaging 27
1.1.4 Atomic/Submolecular Imaging in Liquids 28
1.2 Summary 29
References 29
2 3D Force Field Spectroscopy 31
2.1 Introduction 31
2.2 Experimental Methodology 33
2.3 Sources of Artifacts in 3D Force Field Spectroscopy 36
2.3.1 Thermal Drift 36
2.3.2 Piezo Nonlinearities 37
2.3.3 Tip Asymmetry 38
2.3.4 Tip Elasticity 41
2.4 Comparison of Data Acquisition and Processing Strategies for 3D Force Field Spectroscopy 42
2.5 Combination of 3D Force Field Spectroscopy with Scanning Tunneling Microscopy: 3D-AFM/STM 44
2.6 Conclusions and Outlook 48
References 49
3 Simultaneous nc-AFM/STM Measurements with Atomic Resolution 51
3.1 Introduction 51
3.2 High-Resolution AFM/STM Images with Functionalized Tips 54
3.3 Numerical Modeling of High-Resolution AFM/STM Images with Functionalized Tips 57
3.4 Effect of Intra-molecular Charge on High-Resolution Images 63
3.5 Conclusions and Outlook 67
References 68
4 Manipulation and Spectroscopy Using AFM/STM at Room Temperature 72
4.1 Introduction 72
4.2 Relation Between Manipulation Probability and Tip Reactivity 74
4.2.1 AFM Setup 74
4.2.2 Vacancy Formation on the Si(111)-(7 times7) Surface 75
4.2.3 Confirmation of Tip Reactivity 76
4.2.4 Atom Manipulation Procedures 76
4.2.5 Relation Between Measured Force and Atom Manipulation Probability 77
4.2.6 Tip Reactivity and Manipulation Capability 79
4.2.7 Tip Reactivity and Spatial Resolution 80
4.3 Inter-nanospace Atom Manipulation for Structuring Nanoclusters 80
4.3.1 Method for Inter-nanospace Atom Manipulation 81
4.3.2 AFM/STM Setup for the INSAM Operation 82
4.3.3 Inter-nanospace Atom Manipulation of Various Elements 83
4.3.4 Fabrication of Nanocluster Using Inter-nanospace Atom Manipulation 84
4.3.5 Distance Spectroscopic Measurement During INSAM Operation 86
References 89
5 The Phantom Force 91
5.1 Introduction and Background 91
5.1.1 Frequency-Modulation Atomic Force Microscopy 92
5.1.2 The Forces at Play at the Atomic Scale 94
5.1.3 Electrostatic Attraction Between Metal Surfaces 95
5.1.4 Conductance in an Atomic-Scale Junction 96
5.1.5 Including Resistance in Our Overall Picture of Tunneling 97
5.1.6 Summary 98
5.2 Observations 100
5.2.1 Characterizing the Phantom Force 103
5.2.2 Kelvin Probe Force Microscopy 106
5.2.3 Observations on H-Terminated Si(100) 108
5.2.4 Molecular Adsorbate on Graphene 109
5.3 Concluding Remarks and Outlook 110
References 111
6 Non-contact Friction 113
6.1 Introduction: Dissipation at Large Separation 113
6.2 The Pendulum AFM System 115
6.2.1 The Microscope 115
6.2.2 Internal Friction of the Cantilever 116
6.3 Non-contact Friction Due to Tip-Sample Interaction 118
6.4 Origins of Non-contact Friction 119
6.4.1 Phononic Friction 119
6.4.2 Joule Dissipation 120
6.4.3 van der Waals Friction 121
6.5 Dissipation at Large Separation 121
6.6 Suppression of Electronic Friction in the Superconducting State 123
6.7 The Non-contact Friction Due to Phase Slips of the Charge Density Wave (CDW) in NbSe2 Sample 125
6.8 Conclusion 129
References 130
7 Magnetic Exchange Force Spectroscopy 131
7.1 Introduction 131
7.2 The Tip-Sample System 132
7.2.1 Sample Preparation 132
7.2.2 Tip Preparation 133
7.3 Determining the Magnetic Exchange Interaction 134
7.3.1 Data Acquisition Procedure 134
7.3.2 First-Principles Calculations 136
7.3.3 Comparison Between Theory and Experiment 139
7.4 Magnetic Exchange Induced Switching 140
7.4.1 Experimental Observation 140
7.4.2 Modified Néel-Brown Model 142
7.4.3 Magnetic Stability of Tips 142
7.5 Conclusion 143
References 144
8 Revealing Subsurface Vibrational Modes by Atomic-Resolution Damping Force Spectroscopy 146
8.1 Introduction 146
8.2 Damping Force Spectroscopy 147
8.2.1 Dynamic AFM Operation 147
8.2.2 The Damping Signals ?E 147
8.3 DFS on Complex Molecular Systems 150
8.3.1 Supramolecular Assembly 150
8.3.2 Dynamic AFM Instrumentation 152
8.3.3 Topography and Damping on Peapods 153
8.3.4 Packing and Optimum Geometry of Peapods 156
8.3.5 Molecular Dynamics Simulations 159
8.3.6 Summary 162
References 163
9 Self-assembly of Organic Molecules on Insulating Surfaces 165
9.1 Introduction 166
9.2 Self-assembly Principles 167
9.2.1 General Considerations 167
9.2.2 Special Situation on Insulator Surfaces 175
9.3 Studied Systems---State of the Art 177
9.3.1 Strategies for Anchoring 177
9.3.2 Decoupling Molecule-Surface and Intermolecular Interactions 182
9.4 Outlook 183
References 184
10 Atomic-Scale Contrast Formation in AFM Images on Molecular Systems 190
10.1 Introduction 190
10.2 Tip Reactivity and Atomic Contrast 191
10.2.1 Well-Defined Tips and a Model Surface 191
10.2.2 Force Spectroscopy with Reactive and Non-Reactive Tips on Epitaxial Graphene 193
10.2.3 (Non-)Reactivity Determines the Imaging Contrast 195
10.3 Relating Electronic Properties with Atomic Structure 196
10.3.1 AFM Versus STM and Finite-Size Effects in Graphene 197
10.3.2 Imaging Defects in Graphene Nanoribbons 199
10.4 Understanding Measurements with a Flexible Tip Apex 200
10.4.1 Measuring Interaction Energies with a Molecule-Terminated Tip 200
10.4.2 Can Atomic Positions Be Measured Quantitatively by AFM with Molecule-Terminated Tips? 201
10.4.3 Can AFM Images Be Background Corrected on the Atomic Scale? 203
10.4.4 AFM Contrast on Intra- and Intermolecular Bonds 205
10.5 Conclusions 209
References 210
11 Single Molecule Force Spectroscopy 212
11.1 Introduction: Towards Single Molecule Investigations with nc-AFM 213
11.2 Experimental Requirements 214
11.2.1 Single Molecules at Surfaces 214
11.2.2 Three-Dimensional Spectroscopic Measurements 215
11.3 Probing Mechanical Properties at the Sub-molecular Level 220
11.3.1 3D-Force Field of Fullerene C60 220
11.3.2 Directed Rotation of Porphyrins 223
11.3.3 Vertical Manipulation of Long Molecular Chains 227
11.3.4 Lateral Manipulation of Single Porphyrin: Atomic-Scale Friction Pattern 229
11.4 Prospects in Probing the Electronic Properties of Single Molecules 230
11.4.1 LCPD Mapping of a Donor-Acceptor Molecule 231
11.4.2 LCPD Mapping of Metal-Phtalocyanin on Thin Insulating Films 232
11.4.3 Towards Probing Optical Properties of Single Molecules 233
11.5 Conclusion and Perspectives 236
References 237
12 Atomic Resolution on Molecules with Functionalized Tips 240
12.1 Experimental Set-up and Tip Functionalization 240
12.2 The Origin of Atomic Contrast 244
12.3 Bond-Order Discrimination and CO-Tip Relaxation 249
12.4 Adsorption Geometry Determination 254
12.5 Molecular Structure Identification 256
12.6 Kelvin Probe Force Microscopy with Sub-molecular Resolution 258
12.7 Summary 260
References 261
13 Mechanochemistry at Silicon Surfaces 264
13.1 Introduction 264
13.2 Experimental Methods 266
13.2.1 Force Extraction 267
13.3 Computational Methods 268
13.4 Si(100) Results 269
13.4.1 The Si(100) Surface Structure Viewed by NC-AFM 269
13.4.2 Dimer Manipulation by Mechanical Force 271
13.4.3 Energetic Pathway to Manipulation 277
13.4.4 Visualising the Effect of Surface Strain on Dimer Stability 280
13.5 Imaging and Manipulation with Reactive and Passivated Tip Structures 281
13.6 The Hydrogen Passivated Silicon Surface: H:Si(100) 285
13.6.1 Feasibility of Mechanical Extraction of Hydrogen 287
13.7 Summary 288
References 289
14 Scanning Tunnelling Microscopy with Single Molecule Force Sensors 292
14.1 Introduction 292
14.2 A Survey of Experimental Results 296
14.2.1 Geometric Contrast in STM 296
14.2.2 Tip Functionalization 297
14.2.3 Image Distortions 300
14.2.4 Structural Sensitivity 302
14.2.5 Mixed Contrasts 302
14.2.6 Further Image Features 304
14.3 The Sensor-Transducer Model of Geometric STM Contrast 305
14.4 A Unified Model of STM and AFM with Nanoscale Force Sensors 308
14.5 Conclusion and Outlook 315
References 317
15 Nanostructured Surfaces of Doped Alkali Halides 319
15.1 Introduction 319
15.2 Low Defect Concentration---the Debye-Frenkel Layer 320
15.3 High Defect Concentration---The Suzuki Phase 323
15.3.1 Structure and Surface of the Suzuki Phase 324
15.3.2 Surface Morphology 325
15.3.3 Atomic Resolution and Identification 329
15.4 Supported Nano-objects on the Suzuki Surface 333
15.4.1 Metal Nanoparticles 333
15.4.2 Functionalized Molecules 336
References 339
16 The Atomic Structure of Two-Dimensional Silica 343
16.1 Introduction 343
16.2 The 2D Glass Model 345
16.3 The Realization of an Amorphous Model System 346
16.4 The Limits of Scanning Probe Methods 347
16.5 Assignment of Atomic Positions 349
16.6 Atomic Force Microscopy Challenges X-Ray Diffraction 352
16.6.1 Structural Unit---Range I 353
16.6.2 Interconnection of Silica Units---Range II 355
16.6.3 Network Topology---Range III 357
16.6.4 Density Fluctuations---Range IV 361
16.7 Crystalline-Vitreous Interface in 2D Silica 362
16.8 Topological Analyzes of Two-Dimensional Network Structures 364
16.9 Summary 366
References 367
17 Imaging Molecules on Bulk Insulators Using Metallic Tips 370
17.1 Introduction 370
17.2 Experimental Set-Up and Procedures 372
17.2.1 Tip Preparation and Control 372
17.3 Theoretical Methodology 374
17.4 Chemical Resolution on NaCl(001) and NiO(001) 375
17.5 Metallic Tip Characterization and Imaging Mechanisms 377
17.5.1 Characterizing Metallic AFM Tips 378
17.5.2 Explicit Determination of Tip Dipoles 381
17.5.3 Imaging the CO Molecule 385
17.5.4 Imaging Larger Polar Molecules 389
17.6 Discussion and Conclusions 390
References 392
18 Simulating Solid-Liquid Interfaces in Atomic Force Microscopy 394
18.1 Introduction 394
18.2 Methodology 396
18.2.1 Simulation Level 397
18.2.2 Free Energy Calculations 398
18.2.3 Simulation Setup 400
18.2.4 Interactions 402
18.2.5 Tips and Tricks 404
18.3 Case Studies 407
18.3.1 Simple Ionic Surfaces 407
18.3.2 Calcite 410
18.3.3 Molecular Crystal p-Nitroaniline 413
18.3.4 Ionic Liquids 415
18.4 Discussion 417
References 418
19 Recent Progress in Frequency Modulation Atomic Force Microscopy in Liquids 425
19.1 Brief Overview 425
19.1.1 Introduction 425
19.1.2 Characteristic Features in FM-AFM Solid-Liquid Interface Measurements 426
19.2 Quantitative Force/Dissipation Measurement Using FM-AFM in Liquids 429
19.2.1 Effect of Phase Shifting Elements in FM-AFM 429
19.2.2 Photothermal Excitation of Cantilevers in Liquids 432
19.2.3 Optimum Oscillation Amplitude for FM-AFM in Liquids 433
19.2.4 2D and 3D Force Mapping Techniques 434
19.3 Application of FM-AFM 1: 2D/3D Force Mapping 435
19.3.1 3D Hydration Force Mapping on Muscovite Mica 435
19.3.2 3D Electrostatic Force Mapping on Surfactant Aggregates 438
19.4 Application of FM-AFM 2: High-Resolution Imaging of Biomolecules 441
19.4.1 DNA 441
19.4.2 Self-assembled Monoclonal Antibodies 443
19.5 Summary and Outlook 446
References 446
20 Advanced Instrumentation of Frequency Modulation AFM for Subnanometer-Scale 2D/3D Measurements at Solid-Liquid Interfaces 448
20.1 Introduction 448
20.2 Advanced Instrumentation 450
20.2.1 3D Scanning Force Microscopy 451
20.2.2 Improvements of Fundamental Performance 452
20.3 Applications of Liquid-Environment FM-AFM 458
20.3.1 2D Imaging 458
20.3.2 3D Imaging 464
20.4 Summary 469
References 470
21 Electrochemical Applications of Frequency Modulation Atomic Force Microscopy 474
21.1 Surface Electrochemistry 474
21.1.1 Electrochemical Interfaces 474
21.1.2 Surface Analysis 476
21.1.3 Electrochemical Scanning Probe Microscopy 477
21.2 EC-FM-AFM 481
21.2.1 Instruments of EC-FM-AFM 481
21.2.2 Soft Imaging of Adsorbates 482
21.2.3 Solvation Structures by Force Curves 484
21.3 Outlook 487
References 490
22 High-Speed Atomic Force Microscopy 493
22.1 Introduction 493
22.2 Theoretical Considerations 495
22.3 Cantilever and Tip 497
22.4 OBD System for Small Cantilevers 500
22.5 Fast Amplitude Detector 503
22.6 Scanner 506
22.6.1 Piezoelectric Actuator 506
22.6.2 Scanner Design 507
22.7 Control Techniques 509
22.7.1 Active Damping of Z-scanner Vibrations 510
22.7.2 Control Techniques to Damp XY-scanner Vibrations 512
22.7.3 Compensation for Nonlinearity and Crosstalk 514
22.7.4 Dynamic PID Controller 516
22.7.5 Drift Compensator 518
22.8 HS-AFM Imaging of Protein Molecules in Action 519
22.8.1 Myosin V 519
22.8.2 Intrinsically Disordered Proteins 522
22.9 Future Prospects 525
References 526
Index 531
Erscheint lt. Verlag | 18.5.2015 |
---|---|
Reihe/Serie | NanoScience and Technology | NanoScience and Technology |
Zusatzinfo | XXII, 527 p. 256 illus., 159 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Analytische Chemie |
Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik | |
Technik ► Maschinenbau | |
Schlagworte | Atomic force microscopy • Atomic/Molecular Manipulation • atomic resolution • Atom manipulation • chemical structure • Force Mapping with Atomic Resolution • Liquid AFM • Magnetic Exchange Force Microscopy • scanning probe techniques • Scanning Tunneling Microscopy |
ISBN-10 | 3-319-15588-1 / 3319155881 |
ISBN-13 | 978-3-319-15588-3 / 9783319155883 |
Haben Sie eine Frage zum Produkt? |
Größe: 30,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich