Molecular Rearrangements in Organic Synthesis
John Wiley & Sons Inc (Verlag)
978-1-118-34796-6 (ISBN)
Designed for practitioners of organic synthesis, this book helps chemists understand and take advantage of rearrangement reactions to enhance the synthesis of useful chemical compounds.
Provides ready access to the genesis, mechanisms, and synthetic utility of rearrangement reactions
Emphasizes strategic synthetic planning and implementation
Covers 20 different rearrangement reactions
Includes applications for synthesizing compounds useful as natural products, medicinal compounds, functional materials, and physical organic chemistry
Christian M. Rojas, PhD, is Professor of Chemistry at Barnard College. He obtained his Ph.D. at Indiana University in 1995 and did postdoctoral studies at the Massachusetts Institute of Technology and then at The Scripps Research Institute. Professor Rojas began his independent career at Barnard College in 1997. His research explores the use of acyl nitrenes for the synthesis of amino sugars.
LIST OF CONTRIBUTORS xvii
PREFACE xxi
PART 1 1,2-MIGRATIONS 1
1 Pinacol and Semipinacol Rearrangements in Total Synthesis 3
1.1 Introduction 3
1.2 Pinacol Reaction 4
1.3 Semipinacol Rearrangement 15
1.4 Conclusion 30
References 32
2 Baeyer–Villiger (BV) Oxidation/Rearrangement in Organic Synthesis 35
2.1 Introduction 35
2.2 Mechanism 35
2.3 Synthetic Applications 37
2.4 Summary and Outlook 55
References 55
3 The Wolff Rearrangement: Tactics, Strategies and Recent Applications in Organic Synthesis 59
3.1 Introduction 59
3.2 Tactics and Strategies via the Wolff Rearrangement 60
3.3 Mechanistic Features and Selectivity Issues of the Wolff Rearrangement 63
3.4 Preparation of α-Diazocarbonyl Compounds 64
3.5 Recent Synthetic Applications of the Wolff Rearrangement 67
3.6 Conclusion and Outlook 80
References 81
4 Alkyl and Acyl Azide Rearrangements 85
4.1 Introduction 85
4.2 Alkyl Azide Rearrangements 86
4.3 Acyl Azide Rearrangements 98
4.4 Hofmann Rearrangement 102
4.5 Lossen Rearrangement 104
4.6 Conclusion 107
References 108
5 Beckmann Rearrangements and Fragmentations in Organic Synthesis 111
5.1 Introduction 111
5.2 Strategic Planning: A Historical Perspective 118
5.3 Recent Applications Toward the Synthesis of Natural Products 121
5.4 Access to Diverse Scaffolds via the Beckmann Reaction 129
5.4.1 Diterpene Hydrocarbons 129
5.5 Formation of Heterocyclic Scaffolds 136
5.6 Synthesis of Functional Groups 140
5.7 Summary and Outlook 144
References 145
6 Brook Rearrangement 151
6.1 Introduction 151
6.2 Mechanism 152
6.3 Methods for Generation of α-Silyl Alkoxides 153
6.4 Synthetic Reactions Using Brook Rearrangements in the Reactions of Acylsilanes with Nucleophiles 154
6.5 Synthetic Reactions Using Brook Rearrangements Triggered by Deprotonation of α-Silyl Alcohols 166
6.6 Synthetic Reactions Using Brook Rearrangements Triggered by Addition of Silylmetallic Reagents 169
6.7 Synthetic Reactions Using Brook Rearrangements in β-Silyl Alkoxides Generated via Regioselective β-Ring-Opening of α, β-Epoxysilanes by a Nucleophile 172
6.8 Synthetic Reactions Using Brook Rearrangements in α-Silyl Alkoxides Generated by a Base-Induced Ring-Opening of alpha;, β-Epoxysilanes 173
6.9 Conclusion 176
References 178
PART II 1,2-MIGRATIONS VIA THREE-MEMBERED RINGS 183
7 The Quasi-Favorskii Rearrangement 185
7.1 Introduction 185
7.2 Retrons of the Quasi-Favorskii Rearrangement 191
7.3 Mechanistic Considerations in the Quasi-Favorskii Rearrangement 192
7.4 The Preparation of Substrates for the Quasi-Favorskii Rearrangement 193
7.5 Applications of the Quasi-Favorskii Rearrangement in Synthesis 199
7.6 Conclusions and Prospects 220
Acknowledgments 222
References 222
8 The Ramberg–Bäcklund Reaction 227
8.1 Introduction 227
8.2 Methods to Synthesize Sulfones as RBR Precursors 229
8.3 Variations of the RBR 231
8.4 Mechanistic Evaluation of the RBR 233
8.5 Strategic Considerations Relevant to the Use of the RBR in Synthesis 234
8.6 Utility, Scope, and Limitations of the RBR 236
8.7 Recent Applications of the RBR in the Synthesis of Complex Target Structures 246
8.7.1 Fawcettidine 246
8.8 Concluding Remarks 254
Acknowledgments 256
References 256
9 Applications of Di-л-Methane and Related Rearrangement Reactions in Chemical Synthesis 261
9.1 Introduction: The Basic Process and its Variants 261
9.2 Mechanistic Features and Competing Reactions 265
9.3 Structural Requirements of Substrates and Matters of Regio- and Stereochemistry 271
9.4 Synthetic Routes to Substrates and Applications in Synthesis 277
9.5 Outlook 284
References 285
PARTIII 1,3-TRANSPOSITIONS 289
10 Payne Rearrangement 291
10.1 Background on the Payne Rearrangement 291
10.2 Synthetic Applications of 2,3-Epoxy Alcohols 295
10.3 Utilization of the Payne Rearrangement for the Preparation of Fluorine-Containing Compounds 307
10.4 Conclusion 317
References 318
11 Vinylcyclopropane–Cyclopentene Rearrangement 323
11.1 Introduction 323
11.2 Thermal VCP–CP Rearrangement 324
11.3 Acid-Mediated VCP–CP Rearrangement 328
11.4 Mechanisms 330
11.5 Heteroatom-Containing Analogues of the VCP–CP Rearrangement 334
11.6 Applications in Synthesis 336
11.7 Photochemical VCP–CP Rearrangement 340
11.8 Metal-Catalyzed VCP–CP Rearrangement 346
11.9 Heteroatom Variants of the Metal-Catalyzed VCP–CP Rearrangement 354
11.10 Summary and Outlook 359
References 360
12 Ferrier Carbocyclization Reaction 363
12.1 Introduction 363
12.2 General Discussion and Mechanistic Features 365
12.3 Synthetic Strategies Based on the Ferrier Carbocyclization Reaction 373
12.4 Methodologies for Assembling the Ferrier Carbocyclization Reaction Substrates 377
12.5 Applications of the Ferrier Carbocyclization Reaction in Natural Product Synthesis 380
12.6 Conclusion 397
References 398
PARTIV [3,3]- AND [2,3]-SIGMATROPIC REARRANGEMENTS 401
13 The Claisen Rearrangement 403
13.1 Introduction 403
13.2 Strategic Planning for the Claisen Rearrangement Reaction 407
13.3 Mechanistic Features of the Claisen Rearrangement Reaction 409
13.4 Methodologies for Synthesis of Claisen Rearrangement Substrates 417
13.5 Applications of the Claisen Rearrangement Reaction in Target-Oriented Synthesis 421
13.6 Conclusions 426
References 427
14 [3,3]-Sigmatropic Rearrangements with Heteroatom–Heteroatom Bonds 431
14.1 Introduction 431
14.2 [3,3]-Sigmatropic Rearrangements of N–O Bonds 434
14.3 [3,3]-Sigmatropic Rearrangements of N–N Bonds 445
14.4 [3,3]-Rearrangements of N–N Bond Fragments that Eliminate N2 451
14.5 Summary 454
References 455
15 [2,3]-Rearrangements of Ammonium Zwitterions 459
15.1 Introduction 459
15.2 [2,3]-Meisenheimer Rearrangement of Amine N-Oxides 460
15.3 [2,3]-Stevens Rearrangement of Ammonium Ylides 479
15.4 Conclusion and Outlook 492
References 493
16 Oxonium Ylide Rearrangements in Synthesis 497
16.1 Introduction 497
16.2 Applications in Synthesis: Oxonium Ylide [2,3]-Sigmatropic Rearrangements 507
16.3 Applications in Synthesis: Oxonium Ylide [1,2]-Stevens Rearrangements 528
16.4 Concluding Remarks 535
References 536
17 The [2,3]-Wittig Rearrangement 539
17.1 Introduction 539
17.2 [2,3]-Wittig Rearrangement of Allyl Propargyl Ethers 541
17.3 Factors Determining [2,3]-Wittig Versus [1,2]-Wittig Rearrangement 544
17.4 Acyclic [2,3]-Wittig Rearrangement of Propargyl-Allyl Ethers 547
17.5 [2,3]-Wittig–Still Rearrangement 552
17.6 Asymmetric [2,3]-Wittig Rearrangement 554
17.7 Aza-[2,3]-Wittig Rearrangement 555
17.8 Other Wittig Rearrangements and Miscellaneous 560
17.9 Conclusion 565
References 565
18 The Mislow–Evans Rearrangement 569
18.1 Introduction 569
Part 1 Mechanistic Aspects and the [2,3] Nature of the Rearrangement 571
18.2 Configurational Lability of Allylic Sulfoxides 571
18.3 Deuterium Labeling to Track [2,3] Pathway 573
18.4 Transition State Features 573
18.5 Equilibrium Between Sulfoxide and Sulfenate 576
18.6 Chirality Transfer 579
Part 2 Synthetic Considerations and Applications 580
18.7 Alkene Stereoselectivity 580
18.8 Diastereoface Selectivity in the Rearrangement 583
18.9 Epimerizations via Mislow–Evans Rearrangement Sequences 591
18.10 Vinyl Anion Synthons Accessible via Mislow–Evans Rearrangement 593
18.11 Sequential Processes Incorporating the Mislow–Evans Rearrangement 598
18.12 Heteroatom [2,3]-Rearrangement Variants 614
18.13 [2,3]-Rearrangements of Propargyl and Allenyl Sulfenates and Sulfoxides 620
18.14 Conclusion 622
References 622
PART V IPSO REARRANGEMENTS 627
19 Smiles Rearrangements 629
19.1 Introduction 629
19.2 Scope and Mechanistic Features 632
19.3 Application of Smiles Rearrangements 635
19.4 Conclusion 657
References 658
20 Pummerer-Type Reactions as Powerful Tools in Organic Synthesis 661
20.1 Introduction 661
20.2 Classical Pummerer Reaction 662
20.3 Vinylogous Pummerer Reaction 674
20.4 Interrupted and Additive Pummerer Reactions 680
20.5 Connective Pummerer Reaction 687
20.6 Pummerer Rearrangement in Multiple-Reaction Processes 693
20.7 Other Pummerer Rearrangements 696
20.8 Summary and Outlook 700
References 700
INDEX 703
Erscheint lt. Verlag | 4.12.2015 |
---|---|
Verlagsort | New York |
Sprache | englisch |
Maße | 152 x 239 mm |
Gewicht | 1202 g |
Themenwelt | Naturwissenschaften ► Chemie ► Organische Chemie |
ISBN-10 | 1-118-34796-X / 111834796X |
ISBN-13 | 978-1-118-34796-6 / 9781118347966 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich