Limit Theorems for Multi-Indexed Sums of Random Variables (eBook)

(Autor)

eBook Download: PDF
2014 | 2014
XVIII, 483 Seiten
Springer Berlin Heidelberg (Verlag)
978-3-662-44388-0 (ISBN)

Lese- und Medienproben

Limit Theorems for Multi-Indexed Sums of Random Variables - Oleg Klesov
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Presenting the first unified treatment of limit theorems for multiple sums of independent random variables, this volume fills an important gap in the field. Several new results are introduced, even in the classical setting, as well as some new approaches that are simpler than those already established in the literature. In particular, new proofs of the strong law of large numbers and the Hajek-Renyi inequality are detailed. Applications of the described theory include Gibbs fields, spin glasses, polymer models, image analysis and random shapes.

Limit theorems form the backbone of probability theory and statistical theory alike. The theory of multiple sums of random variables is a direct generalization of the classical study of limit theorems, whose importance and wide application in science is unquestionable. However, to date, the subject of multiple sums has only been treated in journals.

The results described in this book will be of interest to advanced undergraduates, graduate students and researchers who work on limit theorems in probability theory, the statistical analysis of random fields, as well as in the field of random sets or stochastic geometry. The central topic is also important for statistical theory, developing statistical inferences for random fields, and also has applications to the sciences, including physics and chemistry.



Oleg Klesov graduated from Kiev Shevchenko University in 1977 and obtained his PhD in 1979, followed by his habilitation in 2001. He is currently Professor at the National Technical University of Ukraine 'Kyiv Polytechnic Institute'. During his academic career, he has held several positions as Invited Professor at Lublin (Poland), Debrecen (Hungary), Marburg, Koeln, Paderborn (Germany), Gainesville (USA), Cergy Pontoise (France), and Lakehead (Canada). His main scientific interests are in probability theory, stochastic processes and real analysis.

Oleg Klesov graduated from Kiev Shevchenko University in 1977 and obtained his PhD in 1979, followed by his habilitation in 2001. He is currently Professor at the National Technical University of Ukraine “Kyiv Polytechnic Institute”. During his academic career, he has held several positions as Invited Professor at Lublin (Poland), Debrecen (Hungary), Marburg, Koeln, Paderborn (Germany), Gainesville (USA), Cergy Pontoise (France), and Lakehead (Canada). His main scientific interests are in probability theory, stochastic processes and real analysis.

1.Notation and auxiliary results.- 2.Maximal inequalities for multiple sums.- 3.Weak convergence of multiple sums.- 4.Weak law of large numbers for multiple sums.- 5.Almost sure convergence for multiple series.- 6.Boundedness of multiple series.- 7.Rate of convergence of multiple sums.- 8.Strong law of large numbers for independent non-identically distributed random variables.- 9.Strong law of large numbers for independent identically distributed random variables.- 10.Law of the iterated logarithm.- 11.Renewal theorem for random walks with multidimensional time.- 12.Existence of moments of the supremum of multiple sums and the strong law of large numbers.- 13.Complete convergence.

Erscheint lt. Verlag 13.10.2014
Reihe/Serie Probability Theory and Stochastic Modelling
Probability Theory and Stochastic Modelling
Zusatzinfo XVIII, 483 p. 2 illus.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
Technik
Schlagworte 60F15, 60F05, 60F10, 60E15, 60E07, 60E10, 60F20 • almost sure convergence • law of the iterated logarithm • limit theorems of probability theory • multiple sums • strong law of large numbers
ISBN-10 3-662-44388-0 / 3662443880
ISBN-13 978-3-662-44388-0 / 9783662443880
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich