Handbook of Crystal Growth -

Handbook of Crystal Growth (eBook)

Thin Films and Epitaxy

Tom Kuech (Herausgeber)

eBook Download: PDF | EPUB
2014 | 2. Auflage
1382 Seiten
Elsevier Science (Verlag)
978-0-444-63305-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
350,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques - Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth - Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology - Describes atomic level epitaxial deposition and other low temperature growth techniques - Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials - Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials
Volume IIIA Basic TechniquesHandbook of Crystal Growth, Second Edition Volume IIIA (Basic Techniques), edited by chemical and biological engineering expert Thomas F. Kuech, presents the underpinning science and technology associated with epitaxial growth as well as highlighting many of the chief and burgeoning areas for epitaxial growth. Volume IIIA focuses on major growth techniques which are used both in the scientific investigation of crystal growth processes and commercial development of advanced epitaxial structures. Techniques based on vacuum deposition, vapor phase epitaxy, and liquid and solid phase epitaxy are presented along with new techniques for the development of three-dimensional nano-and micro-structures.Volume IIIB Materials, Processes, and TechnologyHandbook of Crystal Growth, Second Edition Volume IIIB (Materials, Processes, and Technology), edited by chemical and biological engineering expert Thomas F. Kuech, describes both specific techniques for epitaxial growth as well as an array of materials-specific growth processes. The volume begins by presenting variations on epitaxial growth process where the kinetic processes are used to develop new types of materials at low temperatures. Optical and physical characterizations of epitaxial films are discussed for both in situ and exit to characterization of epitaxial materials. The remainder of the volume presents both the epitaxial growth processes associated with key technology materials as well as unique structures such as monolayer and two dimensional materials.Volume IIIA Basic Techniques- Provides an introduction to the chief epitaxial growth processes and the underpinning scientific concepts used to understand and develop new processes. - Presents new techniques and technologies for the development of three-dimensional structures such as quantum dots, nano-wires, rods and patterned growth- Introduces and utilizes basic concepts of thermodynamics, transport, and a wide cross-section of kinetic processes which form the atomic level text of growth process Volume IIIB Materials, Processes, and Technology- Describes atomic level epitaxial deposition and other low temperature growth techniques- Presents both the development of thermal and lattice mismatched streams as the techniques used to characterize the structural properties of these materials- Presents in-depth discussion of the epitaxial growth techniques associated with silicone silicone-based materials, compound semiconductors, semiconducting nitrides, and refractory materials

List of Contributors


Hiroshi Amano,     Department of Electrical Engineering and Computer Science, Akasaki Research Center, Nagoya University, Nagoya, Japan

Yamina André

Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France

CNRS, UMR 6602, Aubière, France

Hajime Asahi,     The Institute of Scientific and Industrial Research, Osaka University, MIHOGAKA, IBARAKI, Osaka, Japan

John E. Ayers,     Electrical and Computer Engineering Department, University of Connecticut, Storrs, CT, USA

Michael J. Aziz,     Harvard School of Engineering and Applied Sciences, Cambridge, MA, USA

Bhavtosh Bansal,     Dept. of Physical Sciences, Indian Institute of Science Education and Research Kolkata, India

Arnab Bhattacharya,     Dept. of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, India

Robert M. Biefeld,     Sandia National Laboratories, Albuquerque, NM, USA

A.A. Bol,     Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

April S. Brown,     Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA

Robert Cadoret

Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France

CNRS, UMR 6602, Aubière, France

Jeffrey G. Cederberg,     Sandia National Laboratories, Albuquerque, NM, USA

Xiaogang Chen,     Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA

Enrique D. Cobas,     Materials Science and Technology Division, U.S. Naval Research Laboratory, SW Washington, DC, USA

James J. Coleman,     Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA

Armin Dadgar,     Institute of Experimental Physics, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

Paul G. Evans,     Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI, USA

Roberto Fornari,     Department of Physics and Earth Sciences, University of Parma, Parma, Italy

Hiroshi Fujioka,     Institute of Industrial Science, The University of Tokyo

D. Kurt Gaskill,     U.S. Naval Research Laboratory, Washington, DC, USA

Evelyne Gil

Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France

CNRS, UMR 6602, Aubière, France

Mark S. Goorsky,     UCLA, HSSEAS School of Engineering & Applied Sciences, Department of Materials Science and Engineering, Los Angeles, CA, USA

Brett C. Johnson,     School of Physics, University of Melbourne, Victoria, Australia

W.M.M. Kessels,     Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Jeong Dong Kim,     Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, USA

Tsunenobu Kimoto,     Department of Electronic Science and Engineering, Kyoto University, Kyoto, Japan

H.C.M. Knoops,     Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

G. Koblmüller

Materials Department, University of California, Santa Barbara, CA, USA

Walter Schottky Institut and Physik Department, Technische Universität München, Garching, Germany

Daniel D. Koleske,     Sandia National Laboratories, Albuquerque, NM, USA

Alois Krost,     Institute of Experimental Physics, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

Thomas F. Kuech,     Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI, USA

J.R. Lang

Materials Department, University of California, Santa Barbara, CA, USA

Electrical Engineering Department, Yale University, New Haven, CT, USA

Hongdong Li,     State Key Laboratory of Superhard Materials, Jilin University, Changchun, Jilin, China

Xiuling Li,     Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL, USA

Maria Losurdo,     National Council of Research, Institute of Inorganic Methodologies and of Plasmas, CNR-IMIP, via Orabona 4, 70126 Bari, Italy

Fumihiro Matsukura

WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

Center for Spintronics Integrated Systems, Tohoku University, Sendai, Japan

Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan

Michael G. Mauk,     College of Engineering, Drexel University, Philadelphia, PA, USA

Jeffrey C. McCallum,     School of Physics, University of Melbourne, Victoria, Australia

Kathleen M. McCreary,     NRC Postdoctoral Fellow Residing at U.S. Naval Research Laboratory, SW Washington, DC, USA

Xin Miao,     Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois, Urbana, IL, USA

Osamu Nakatsuka,     Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan

Nathan Newman,     Materials Program, Arizona State University, Tempe, AZ, USA

Tatau Nishinaga,     The University of Tokyo, Japan

Hideo Ohno

WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

Center for Spintronics Integrated Systems, Tohoku University, Sendai, Japan

Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan

S.E. Potts,     Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

Aaron J. Ptak,     National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO, USA

Joan M. Redwing,     Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, PA, USA

Zachary R. Robinson,     ASEE Postdoctoral Fellow Residing at U.S. Naval Research Laboratory, SW Washington, DC, USA

Scott W. Schmucker,     NRC Postdoctoral Fellow Residing at U.S. Naval Research Laboratory, SW Washington, DC, USA

Clemens Simbrunner,     Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Upper Austria, Austria

Helmut Sitter,     Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Linz, Upper Austria, Austria

Marek Skowronski,     Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

Josef W. Spalenka,     Materials Science and Engineering, University of Wisconsin–Madison, Madison, WI, USA

J.S. Speck,     Materials Department, University of California, Santa Barbara, CA, USA

Wolfgang Stolz,     Material Sciences Center and Faculty of Physics, Philipps-Universität Marburg, Marburg, Germany

E. Suhir,     ERS Co., Los Altos, CA, USA

Roman Talalaev,     STR Group – Soft-Impact Ltd., St. Petersburg, Russia

Hidekazu Tanaka,     Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan

Agnès Trassoudaine

Clermont Université, Université Blaise Pascal, Institut Pascal, Clermont-Ferrand, France

CNRS, UMR 6602, Aubière, France

Clermont Université, Université d'Auvergne, Institut Pascal, Clermont-Ferrand, France

Mahmoud Vahidi,     Materials Program, Arizona State...

Erscheint lt. Verlag 2.11.2014
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Geowissenschaften Mineralogie / Paläontologie
Technik
ISBN-10 0-444-63305-7 / 0444633057
ISBN-13 978-0-444-63305-7 / 9780444633057
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 106,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 70,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99