Plasma Scattering of Electromagnetic Radiation -  John Sheffield

Plasma Scattering of Electromagnetic Radiation (eBook)

eBook Download: PDF
2013 | 1. Auflage
318 Seiten
Elsevier Science (Verlag)
978-1-4832-2022-2 (ISBN)
Systemvoraussetzungen
54,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the general scattered spectrum for an unmagnetized, low-temperature, quasi-equilibrium plasma. The application of the general scattered spectrum for a magnetized plasma; the scattering from a high-temperature plasma; and the scattering from unstable plasmas are also encompassed. Plasma physicists and people involved in the study of electromagnetic radiation will find the book invaluable.

John Sheffield PhD is known worldwide because of his involvement in numerous multi-national fusion energy projects for the U.S. and Europe. In the 1970s, he was on the design team for the 16-nation, Joint European Torus project at Culham in England; in the 1990s, he served as a U.S. representative on committees that defined and then gave technical advice to the International Thermonuclear Experimental Reactor (ITER)-China, Europe, India, Japan, Korea, Russia, and the United States.He served on the US-DOE's Fusion Energy Sciences Advisory Committee for over a decade, chairing it from 1996 to 2000. From 1988 to 1994, he was director of Fusion Energy at the Oak Ridge National Laboratory. From 1995 to 2003, he was director for Energy Technology Programs at ORNL, and from 1997 also director of the Joint Institute for Energy and Environment at the University of Tennessee. There he remains as a Senior Fellow in what is now called the Institute for a Secure and Sustainable Environment.
Plasma Scattering of Electromagnetic Radiation covers the theory and experimental application of plasma scattering. The book discusses the basic properties of a plasma and of the interaction of radiation with a plasma; the relationship between the scattered power spectrum and the fluctuations in plasma density; and the incoherent scattering of low-temperature plasma. The text also describes the constraints and problems that arise in the application of scattering as a diagnostic technique; the characteristic performance of various dispersion elements, image dissectors, and detectors; and the general scattered spectrum for an unmagnetized, low-temperature, quasi-equilibrium plasma. The application of the general scattered spectrum for a magnetized plasma; the scattering from a high-temperature plasma; and the scattering from unstable plasmas are also encompassed. Plasma physicists and people involved in the study of electromagnetic radiation will find the book invaluable.

Front Cover 
1 
Plasma Scattering of Electromagnetic Radiation 
4 
Copyright Page 
5 
Table of Contents 
8 
Preface 12
Acknowledgments 13
Chapter 1. Introduction 
14 
1.1 INTRODUCTION 
14 
1.2 PLASMAS 
17 
1.3 SYSTEMS OF UNITS 
20 
1.4 CHARACTERISTIC LENGTHS AND TIMES IN A PLASMA 
22 
1.5 SCATTERING OF ELECTROMAGNETIC RADIATION BY A PLASMA 
23 
1.6 RADIATION BY A MOVING CHARGE 
24 
1.7 ACCELERATION OF ACHARGE BY AN ELECTROMAGNETIC WAVE 
26 
1.8 GENERAL RESTRICTIONS APPLIED TO CALCULATIONS IN THIS BOOK 
31 
Chapter 2. Scattered Power Spectrum 
36 
2.1 SPECTRAL DENSITY FUNCTION S(k,w> )
36 
2.2 KINETIC EQUATIONS FOR A PLASMA 
38 
2.3 S(k,w) FOR A LOW-TEMPERATURE PLASMA 
42 
2.4 S{k,w) FOR A HIGH-TEMPERATURE PLASMA 
46 
2.5 S(k,w) FOURIER-LAPLACE TRANSFORMS AND COLLISIONS 
48 
Chapter 3. Incoherent Scattering—Low-Temperatnre Plasma 
50 
3.1 INTRODUCTION 50
3.2 SCATTERING FROM A SINGLE ELECTRON 51
3.3 INCOHERENT SCATTERING FROM A PLASMA (NO MAGNETIC FIELD) 
54 
3.4 INCOHERENT SCATTERING FROM A PLASMA IN THERMO 
57 
3.5 INCOHERENT SCATTERING FROM A MAGNETIZED PLASMA 61
3.6 COMMENTS ON THE SCATTERED SPECTRUM 64
3.7 MEASUREMENT OF THE DIRECTION O 
67 
Chapter 4. Constraints on Scattering Experiments 
73 
4.1 INTRODUCTION 73
4.2 CHOICE OF A SOURCE (Di,DYi) 
74 
4.3 CHOICE OF A SCATTERING ANGLE (0,D0) 
75 
4.4 SIGNAL-TO-NOISE RATIO (S/)N 
80 
4.5 RATIO OF SCATTERED POWER TO BREMSSTRAHLUNG RADIATION POWER 
83 
4.6 EFFECT OF THE INCIDENT BEAM ON THE PLASMA 
89 
Chapter 5. Optical Systems 
96 
5.1 INTRODUCTION 
96 
5.2 GENERAL PROPERTIES OF SPECTROMETERS: INSTRUMENT FUNCTION 
97 
5.3 DIFFRACTION GRATING SPECTROMETER: THEORY 
99 
5.4 REFLECTION GRATING SPECTROMETER: 
103 
5.5 FABRY-PEROT ETALON: THEORY 106
5.6 FABRY-PEROT ETALON SPECTROMETER: IMAGE DISSECTORS, APPLICATION 109
5.7 MISCELLANEOUS 
114 
5.8 DETECTORS 117
5.9 EXAMPLES 
122 
Chapter 6. 
126 
6.1 INTRODUCTION 126
6.2 DERIVATION OF ne(k,w) FOR B = 0, v = 0 
128 
6.3 THE SPECTRAL DENSITY FUNCTION S(k,w) FOR A COLLISIONLESS PLASMA 
132 
6.4 COMMENTS ON THE EFFECTS OF VARIOUS INITIAL CONDITIONS 135
6.5 S(k,w) FOR A COLLISIONAL PLASMA, B = 0 
137 
6.6 S(k,w) FROM THE FLUCTUATION-DISSIPATION THEOREM 
141 
Chapter 7. Scattering from a Low-Temperature Stable Plasma, B = 0: Experiment 
143 
7.1 INTRODUCTION 143
7.2 S(k,w 
145 
7.3 S(k,w), Te/ti = 1, THE SALPETER APPROXIMATION 
147 
7.4 ELECTRON PLASMA FREQUENCY RESONANCES 150
7.5 ION ACOUSTIC RESONANCE 156
7.6 RELATIVE DRIFT OF ELECTRONS AND IONS 160
7.7 INCOHERENT SPECTRUM FOR COLLISIONAL PLASMA 167
7.8 TOTAL CROSS SECTION ST(k) 169
Chapter 8. Scattering from a Magnetized Plasma 
175 
8.1 INTRODUCTION 175
8.2 CALCULATION OF THE SPECTRAL DENSITY FUNCTION S(k,w 
179 
8.3 S(k,w), MAXWELLIAN DISTRIBUTION FUNCTIONS 
182 
8.4 COLLISIONAL MAGNETIZED PLASMA 185
8.5 TRANSVERSE MODES 187
8.6 GENERAL FEATURES OF THE MAGNETIZED SPECTRUM 189
8.7 TOTAL CROSS SECTION, ST(k) 
191 
8.8 HIGH-FREQUENCY SPECTRUM 195
8.9 LOW-FREQUENCY SPECTRUM 201
Chapter 9. Scattering from a High-Temperature Plasma 
204 
9.1 . INTRODUCTION 204
9.2 THE FINITE TRANSIT TIME EFFECT 207
9.3 S(k,w) FOR HIGH-TEMPERATURE PLASMA, B = 0 
209 
9.4 INCOHERENT SPECTRUM B = 0 212
9.5 SCATTERING GEOMETRY AND FINITE TRANSIT TIME EFFECT FOR A MAGNETIZED PLASMA 217
9.6 S(k,w) HIGH-TEMPERATURE MAGNETIZED PLASMA 
220 
Chapter 10. Scattering from Unstable Plasmas 
224 
10.1 INTRODUCTION 224
10.2 MICROSCOPIC INSTABILITY THEORY 227
10.3 SCATTERING FROM A MARGINALLY STABLE PLASMA 232
10.4 SCATTERING FROM A WEAKLY UNSTABLE PLASMA 237
10.5 SCATTERING FROM MICROTURBULENCE IN SHOCK FRONTS 238
Appendix 1. Mathematical Methods 
247 
A1.1 COMPLEX VARIABLES AND INTEGRALS IN THE COMPLEX PLANE 
247 
A1.2 FOURIER TRANSFORMS 254
A1.3 LAPLACE TRANSFORMS 257
A1.4 STABILITY OF LONGITUDINAL PLASMA OSCILLATIONS 259
A1.5 TOTAL CROSS SECTION FOR A STABLE PLASMA 262
Appendix 2. Kinetic Theory of a Plasma 
264 
A 
264 
A2.2 CHARACTERISTIC LENGTHS AND TIMES IN A PLASMA 265
A2.3 THE BOLTZMANN EQUATION 268
A2.4 COMMENTS ON THE COLLISION TERM 270
A2.5 KINETIC DESCRIPTION OF SCATTERING FROM A PLASMA 272
A2.6 THE BBGKY HIERARCHY 277
A2.7 THE KLIMONTOVICH HIERARCHY 279
A2.8 STABLE, HOMOGENEOUS, QUASI-STATIONARY PLASMAS 283
Appendix 3. Review of Work on the Scattering of Radiation from Plasmas 
290 
A3.1 INTRODUCTION 290
A3.2 SCATTERING FROM THE IONOSPHERE 291
A3.3 SCATTERING FROM LABORATORY PLASMASWITH X{ = L AND co{ = cope 292
A3.4 SCATTERING FROM A PLASMA CLOSE TOEQUILIBRIUM, B = 0, v = 0, kK < L, co{ >
A3.5 SCATTERING FROM A MAGNETIZED PLASMA CLOSE TO EQUILIBRIUM 
296 
A3.6 COLLISIONAL EFFECTS 296
A3.7 HIGH-TEMPERATURE AND RELATIVISTIC EFFECTS 297
A3.8 TOTAL SCATTERING CROSS SECTION 298
A3.9 UNSTABLE AND TURBULENT PLASMA 298
A3.10 ABSORPTION OF THE INCIDENT BEAM AND TWO-BEAM SCATTERING 
300 
Appendix 4. Physical Constants and Formulas 
302 
PHYSICAL CONSTANTS 302
CONVERSION FACTORS 302
FORMULAS 303
SYMBOLS 304
SCATTERING FORMULAS 305
UNITS 305
References 306
Index 314

Erscheint lt. Verlag 22.10.2013
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Quantenphysik
Technik
ISBN-10 1-4832-2022-2 / 1483220222
ISBN-13 978-1-4832-2022-2 / 9781483220222
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 26,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlegende Vorstellungen und Begriffe

von Thomas Görnitz

eBook Download (2024)
Carl Hanser Fachbuchverlag
44,99
Festkörperphysik

von Gerhard Franz

eBook Download (2024)
De Gruyter (Verlag)
89,95
Quantenmechanik

von Gerhard Franz

eBook Download (2024)
De Gruyter (Verlag)
89,95